All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 96773 by abdomathmax last updated on 04/Jun/20
solvey″−y=sinxx
Answered by abdomathmax last updated on 05/Jun/20
letsolvebylaplace(e)⇒L(y″)−L(y)=L(sinxx)⇒x2L(y)−xy(0)−y′(0)−L(y)=L(sinxx)⇒(x2−1)L(y)=xy(0)+y′(0)+L(sinxx)wehaveL(sinxx)=∫0∞sintte−xtdt=f(x)f′(x)=−∫0∞sinte−xtdt=−Im(∫0∞eit−xtdt)∫0∞e(−x+i)tdt=[1−x+ie(−x+i)t]0∞=−1−x+i=1x−i=x+ix2+1⇒f′(x)=−11+x2⇒f(x)=−arrctanx+cf(0)=π2=0+c⇒f(x)=π2−arcrtanxe⇒(x2−1)L(y)=xy(0)+y′(0)+π2−arctanx⇒L(y)=y(0)xx2−1+y′(0)+π2x2−1−arctanxx2−1y(x)=y(0)L−1(xx2−1)+(y′(0)+π2)L−1(1x2−1)−L−1(arctanxx2−1)xx2−1=x(x−1)(x+1)=ax−1+bx+1⇒a=12andb=12⇒L−1(xx2−1)=12ex+12e−x=ch(x)1x2−1=12(1x−1−1x+1)⇒L−1(1x2−1)=ex2−e−x2=sh(x)resttofindL−1(arctanxx2−1)=δ(x)⇒y(x)=y(o)ch(x)+(y′(0)+π2)shx+δ(x)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com