Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 96773 by abdomathmax last updated on 04/Jun/20

solve y^(′′) −y =((sinx)/x)

solveyy=sinxx

Answered by abdomathmax last updated on 05/Jun/20

let solve by laplace   (e)⇒L(y^(′′) )−L(y) =L(((sinx)/x)) ⇒  x^2 L(y)−xy(0)−y^′ (0) −L(y) =L(((sinx)/x)) ⇒  (x^2 −1)L(y) =xy(0)+y^′ (0)+L(((sinx)/x))  we have L(((sinx)/x)) =∫_0 ^∞ ((sint)/t) e^(−xt)  dt =f(x)  f^′ (x) =−∫_0 ^∞  sint e^(−xt)  dt =−Im(∫_0 ^∞ e^(it−xt) dt)  ∫_0 ^∞  e^((−x+i)t)  dt =[(1/(−x+i)) e^((−x+i)t) ]_0 ^∞   =−(1/(−x+i)) =(1/(x−i)) =((x+i)/(x^2 +1)) ⇒f^′ (x) =−(1/(1+x^2 )) ⇒  f(x)=−arrctanx +c  f(0) =(π/2) =0+c ⇒f(x) =(π/2) −arcrtanx  e ⇒(x^2 −1)L(y) =xy(0)+y^′ (0)+(π/2)−arctanx  ⇒L(y) =y(0)(x/(x^2 −1)) +((y^′ (0)+(π/2))/(x^2 −1))−((arctanx)/(x^2 −1))  y(x) =y(0)L^(−1) ((x/(x^2 −1)))+(y^′ (0)+(π/2))L^(−1) ((1/(x^2 −1)))  −L^(−1) (((arctanx)/(x^2 −1)))  (x/(x^2 −1)) =(x/((x−1)(x+1))) =(a/(x−1)) +(b/(x+1)) ⇒  a =(1/2) and b =(1/2) ⇒L^(−1) ((x/(x^2 −1)))  =(1/2)e^x  +(1/2)e^(−x)  =ch(x)  (1/(x^2 −1)) =(1/2)((1/(x−1))−(1/(x+1))) ⇒  L^(−1) ((1/(x^2 −1))) =(e^x /2)−(e^(−x) /2) =sh(x) rest to find  L^(−1) (((arctanx)/(x^2 −1)))=δ(x) ⇒  y(x) =y(o)ch(x)+(y^′ (0)+(π/2))shx +δ(x)

letsolvebylaplace(e)L(y)L(y)=L(sinxx)x2L(y)xy(0)y(0)L(y)=L(sinxx)(x21)L(y)=xy(0)+y(0)+L(sinxx)wehaveL(sinxx)=0sinttextdt=f(x)f(x)=0sintextdt=Im(0eitxtdt)0e(x+i)tdt=[1x+ie(x+i)t]0=1x+i=1xi=x+ix2+1f(x)=11+x2f(x)=arrctanx+cf(0)=π2=0+cf(x)=π2arcrtanxe(x21)L(y)=xy(0)+y(0)+π2arctanxL(y)=y(0)xx21+y(0)+π2x21arctanxx21y(x)=y(0)L1(xx21)+(y(0)+π2)L1(1x21)L1(arctanxx21)xx21=x(x1)(x+1)=ax1+bx+1a=12andb=12L1(xx21)=12ex+12ex=ch(x)1x21=12(1x11x+1)L1(1x21)=ex2ex2=sh(x)resttofindL1(arctanxx21)=δ(x)y(x)=y(o)ch(x)+(y(0)+π2)shx+δ(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com