Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 96782 by  M±th+et+s last updated on 04/Jun/20

1)((cos^4 (θ))/x)−((sin^4 (θ))/y)=(1/(x+y))  find (dy/dx)    2)solve:2⌊x−4+⌊x⌋⌋=6−3⌊x⌋    3)lim_(x→4) (((cos(x))^x −(sin(x))^x −cos(2x))/((x−4)))

1)cos4(θ)xsin4(θ)y=1x+yfinddydx2)solve:2x4+x=63x3)limx4(cos(x))x(sin(x))xcos(2x)(x4)

Commented by  M±th+et+s last updated on 04/Jun/20

thanks for solutions

thanksforsolutions

Answered by mr W last updated on 04/Jun/20

(2)  ⌊x⌋ must be even, say x=2n+f  2⌊2n+f−4+2n⌋=6−3×2n  ⌊4(n−1)+f⌋=3(1−n)  7n=7  ⇒n=1  ⇒2≤x<3

(2)xmustbeeven,sayx=2n+f22n+f4+2n=63×2n4(n1)+f=3(1n)7n=7n=12x<3

Answered by Sourav mridha last updated on 04/Jun/20

(3)(0/0)form so using L′Ho^� pital  Ans:cos^4 (4)[−4tan(4)+ln(cos(4))]         −sin^4 (4)[4cot(4)+ln(sin(4))]           +2sin(8)..

(3)00formsousingLHo^pitalAns:cos4(4)[4tan(4)+ln(cos(4))]sin4(4)[4cot(4)+ln(sin(4))]+2sin(8)..

Answered by abdomathmax last updated on 05/Jun/20

1) (e)⇒((cos^4 θ)/x) =((sin^4 θ)/y) +(1/(x+y)) ⇒  (y/x) cos^4 θ =sin^4 θ +(y/(x+y)) ⇒(y/x)cos^4 θ =sin^4 θ+(1/(((x/y)+1)))  (x/y) =u ⇒((cos^4 θ)/u) =sin^4 θ +(1/(u+1)) ⇒  ((cos^4 θ)/u)−(1/(u+1)) =sin^4 θ ⇒((cos^4 θu+cos^4 θ−u)/(u(u+1))) =sin^4 θ  ⇒cos^4 θu+cos^4 θ−u =sin^4 θ u^2  +sin^4 θ u ⇒  sin^4 θ u^2  +(sin^4 −cos^4 θ+1)u −cos^4 θ=0 ⇒  sin^4 θu^2  +(sin^2 θ−cos^2 θ +1)u −cos^4 θ =0  Δ=(sin^2 θ−cos^2 θ+1)^2 +4 sin^4 θ cos^4 θ  u =((−(sin^2 θ −cos^2 θ+1)+^− (√Δ))/(2sin^4 θ)) =A_θ   y =((Aθ)/x) ⇒(dy/dx) =−(A_θ /x^2 )

1)(e)cos4θx=sin4θy+1x+yyxcos4θ=sin4θ+yx+yyxcos4θ=sin4θ+1(xy+1)xy=ucos4θu=sin4θ+1u+1cos4θu1u+1=sin4θcos4θu+cos4θuu(u+1)=sin4θcos4θu+cos4θu=sin4θu2+sin4θusin4θu2+(sin4cos4θ+1)ucos4θ=0sin4θu2+(sin2θcos2θ+1)ucos4θ=0Δ=(sin2θcos2θ+1)2+4sin4θcos4θu=(sin2θcos2θ+1)+Δ2sin4θ=Aθy=Aθxdydx=Aθx2

Commented by abdomathmax last updated on 05/Jun/20

sorry y =(x/u) =(x/A_θ ) ⇒(dy/dx) =(1/A_θ )

sorryy=xu=xAθdydx=1Aθ

Commented by  M±th+et+s last updated on 05/Jun/20

well done sir

welldonesir

Commented by mathmax by abdo last updated on 05/Jun/20

thankx

thankx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com