Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96834 by mathmax by abdo last updated on 05/Jun/20

1)calculate I_n = ∫_0 ^∞    (dx/((2x^2 +5x+3)^n ))  2) calculate ∫_0 ^∞  (dx/((2x^2  +5x+3)^2 )) and ∫_0 ^∞  (dx/((2x^2  +5x +3)^3 ))

1)calculateIn=0dx(2x2+5x+3)n2)calculate0dx(2x2+5x+3)2and0dx(2x2+5x+3)3

Commented by mathmax by abdo last updated on 05/Jun/20

n integr natural

nintegrnatural

Answered by abdomathmax last updated on 05/Jun/20

1) 2x^2  +5x+3 =0 →Δ =25−4.2.3 =1 ⇒  x_1 =((−5+1)/4) =−1 and x_2 =((−5−1)/4) =−(3/2) ⇒  2x^2  +5x +3 =2(x+1)(x+(3/2)) =(x+1)(2x+3) ⇒  I_n =∫_0 ^∞   (dx/((x+1)^n (2x+3)^n )) =∫_0 ^∞   (dx/((((x+1)/(2x+3)))^n (2x+3)^(2n) ))  changement ((x+1)/(2x+3)) =t give x+1 =2tx +3t ⇒  (1−2t)x =3t−1 ⇒x =((3t−1)/(1−2t)) ⇒  (dx/dt) = ((3(1−2t)−(3t−1)(−2))/((2t−1)^2 )) =((3−6t+6t−2)/((2t−1)^2 ))  =(1/((2t−1)^2 )) also 2x+3 =((6t−2)/(1−2t)) +3  =((6t−2+3−6t)/(1−2t)) =(1/((1−2t))) ⇒  I_n =∫_(1/3) ^(1/2)    (dt/((2t−1)^2 t^n ((1/(2t−1)))^(2n) ))  =∫_(1/3) ^(1/2)    (((2t−1)^(2n−2) )/t^n ) dt  =∫_(1/3) ^(1/2)   ((Σ_(k=0) ^(2n−2)  C_(2n−2) ^k  (2t)^k (−1)^(2n−2−k) )/t^n ) dt  =Σ_(k=0) ^(2n−2)  C_(2n−2) ^k  2^k (−1)^k   ∫_(1/3) ^(1/2)  t^(k−n)  dt  =Σ_(k=0 and k≠n−1) ^(2n−2)  C_(2n−2) ^k  (−2)^k  [(1/(k−n+1))t^(k−n+1) ]_(1/3) ^(1/2)   + C_(2n−2) ^(n−1)  (−2)^(n−1) [ln∣t∣]_(1/3) ^(1/2)   I_n =Σ_(k=0 and k≠n−1) ^(2n−2)  ((C_(2n−2) ^k  (−2)^k )/(k−n+1)){ (1/2^(k−n+1) )−(1/3^(k−n+1) )}  +(−2)^(n−1)  C_(2n−2) ^(n−1)  {ln(3)−ln(2)}

1)2x2+5x+3=0Δ=254.2.3=1x1=5+14=1andx2=514=322x2+5x+3=2(x+1)(x+32)=(x+1)(2x+3)In=0dx(x+1)n(2x+3)n=0dx(x+12x+3)n(2x+3)2nchangementx+12x+3=tgivex+1=2tx+3t(12t)x=3t1x=3t112tdxdt=3(12t)(3t1)(2)(2t1)2=36t+6t2(2t1)2=1(2t1)2also2x+3=6t212t+3=6t2+36t12t=1(12t)In=1312dt(2t1)2tn(12t1)2n=1312(2t1)2n2tndt=1312k=02n2C2n2k(2t)k(1)2n2ktndt=k=02n2C2n2k2k(1)k1312tkndt=k=0andkn12n2C2n2k(2)k[1kn+1tkn+1]1312+C2n2n1(2)n1[lnt]1312In=k=0andkn12n2C2n2k(2)kkn+1{12kn+113kn+1}+(2)n1C2n2n1{ln(3)ln(2)}

Commented by abdomathmax last updated on 05/Jun/20

2) ∫_0 ^∞   (dx/((2x^2  +5x+3)^2 )) =I_2 (n=2)  =Σ_(k=0 and k≠1) ^2   ((C_2 ^k (−2)^k )/(k−1)){(1/2^(k−1) )−(1/3^(k−1) )}  −2 C_2 ^1 ln((3/2))  =−{ 2−3} +(4/1){(1/2)−(1/3)}−4ln((3/2))  =(5/3)−4ln((3/2))

2)0dx(2x2+5x+3)2=I2(n=2)=k=0andk12C2k(2)kk1{12k113k1}2C21ln(32)={23}+41{1213}4ln(32)=534ln(32)

Commented by abdomathmax last updated on 05/Jun/20

∫_0 ^∞     (dx/((2x^2  +5x +3)^3 )) =I_3   =Σ_(k=0 and k≠2) ^4   ((C_4 ^k  (−2)^k )/(k−2)){(1/2^(k−2) )−(1/3^(k−2) )}  +4 C_4 ^2  ln((3/2))  =−(1/2){4−9} +(((−2)C_4 ^1 )/(−1)){2−3}  −((8C_4 ^3 )/1){(1/2)−(1/3)} +((16 C_4 ^4 )/2){(1/4)−(1/9)}+4C_4 ^2 ln((3/2))  =...

0dx(2x2+5x+3)3=I3=k=0andk24C4k(2)kk2{12k213k2}+4C42ln(32)=12{49}+(2)C411{23}8C431{1213}+16C442{1419}+4C42ln(32)=...

Answered by Sourav mridha last updated on 05/Jun/20

1)I_n =∫_0 ^∞ (dx/((2x^2 +5x+3)^n ))            =(1/2^n )∫_0 ^∞ (dx/((x+(3/2))^n .(x+1)^n ))  now let [x+(3/2)]=k(x+1)  after some manipulation you get  this nice result...           =2^(n−1) ∫_1 ^(3/2) (([k−1]^(2(n−1)) )/k^n )dk  now I_2 =2∫_1 ^(3/2) (((k−1)^2 )/k^2 )dk=[(5/3)−4ln(3/2)]  and I_3 =2^2 ∫_1 ^(3/2) (((k−1)^4 )/k^3 )dk                  =4∫_1 ^(3/2) ((Σ_(r=0) ^4 C_r ^4 k^((4−r)) (−1)^r )/k^3 )dk                 =−((525)/(54))+24ln(3/2)  ★very lengthy so I avoid the  total calculation.

1)In=0dx(2x2+5x+3)n=12n0dx(x+32)n.(x+1)nnowlet[x+32]=k(x+1)aftersomemanipulationyougetthisniceresult...=2n1132[k1]2(n1)kndknowI2=2132(k1)2k2dk=[534ln32]andI3=22132(k1)4k3dk=41324r=0C4rk(4r)(1)rk3dk=52554+24ln32verylengthysoIavoidthetotalcalculation.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com