Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 96836 by mathmax by abdo last updated on 05/Jun/20

a_n  is a sequence wich verify a_(n+1)  +a_n =(1/(n+1)) ∀n  calculate Σ_(n=0) ^∞  a_n x^n

anisasequencewichverifyan+1+an=1n+1ncalculaten=0anxn

Answered by Smail last updated on 05/Jun/20

f(x)=Σ_(n=0) ^∞ a_n x^n =Σ_(n=0) ^∞ ((1/(n+1))−a_(n+1) )x^n   =Σ_(n=0) ^∞ (x^n /(n+1))−Σ_(n=0) ^∞ a_(n+1) x^n   =−((ln(1−x))/x)−(1/x)(Σ_(n=0) ^∞ a_n x^n −a_0 )\ only if ∣x∣<1  =((a_0 −ln(1−x))/x)−((f_n (x))/x)  f(x)(1+(1/x))=((a_0 −ln(1−x))/x)  f(x)=((a_0 −ln(1−x))/(x+1))  a_0 =1−(1/2)+(1/3)−(1/4)+(1/5)...+_− (1/k)

f(x)=n=0anxn=n=0(1n+1an+1)xn=n=0xnn+1n=0an+1xn=ln(1x)x1x(n=0anxna0)onlyifx∣<1=a0ln(1x)xfn(x)xf(x)(1+1x)=a0ln(1x)xf(x)=a0ln(1x)x+1a0=112+1314+15...+1k

Commented by mathmax by abdo last updated on 05/Jun/20

how are you sir smail you are absent for a long time in this forum  you still stand in usa?

howareyousirsmailyouareabsentforalongtimeinthisforumyoustillstandinusa?

Commented by Smail last updated on 05/Jun/20

Yes, I am still in the USA.  I bought a new phone and I didn′t a chance  to install this app until two weeks ago.

Yes,IamstillintheUSA.IboughtanewphoneandIdidntachancetoinstallthisappuntiltwoweeksago.

Commented by Smail last updated on 05/Jun/20

How about you? How is your life with this  corona crisis?

Howaboutyou?Howisyourlifewiththiscoronacrisis?

Commented by mathmax by abdo last updated on 05/Jun/20

i am fine thank you ....

iamfinethankyou....

Answered by mathmax by abdo last updated on 05/Jun/20

we have a_(n+1)  +a_n =(1/(n+1)) ⇒a_(n+1) =(1/(n+1))−a_n  ⇒Σ_(n=0) ^∞  a_(n+1) x^n   =Σ_(n=0) ^∞  (x^n /(n+1))−Σ_(n=0) ^∞  a_n x^n  =Σ_(n=1) ^∞  (x^(n−1) /n) −Σ_(n=0) ^∞  a_n x^n  ⇒  Σ_(n=1) ^∞  a_n x^(n−1)  =(1/x)Σ_(n=1) ^∞  (x^n /n) −Σ_(n=0) ^∞  a_n x^n  ⇒  (1/x)Σ_(n=1) ^∞  a_n x^n  +Σ_(n=0) ^∞  a_n x^n   =−(1/x)ln(1−x) ⇒  (1/x)(Σ_(n=0) ^∞  a_n x^n −a_0 )+Σ_(n=0) ^∞  a_n x^n  =−((ln(1−x))/x) ⇒  ((1/x)+1)Σ_(n=0) a_n x^n  =(a_0 /x)−((ln(1−x))/x) ⇒(x+1)Σ_(n=0) ^∞  a_n x^n  =a_0 −ln(1−x) ⇒  Σ_(n=0) ^∞  a_n x^n  =(a_0 /(x+1))−((ln(1−x))/(x+1))

wehavean+1+an=1n+1an+1=1n+1ann=0an+1xn=n=0xnn+1n=0anxn=n=1xn1nn=0anxnn=1anxn1=1xn=1xnnn=0anxn1xn=1anxn+n=0anxn=1xln(1x)1x(n=0anxna0)+n=0anxn=ln(1x)x(1x+1)n=0anxn=a0xln(1x)x(x+1)n=0anxn=a0ln(1x)n=0anxn=a0x+1ln(1x)x+1

Commented by mathmax by abdo last updated on 05/Jun/20

another way we can explicit a_n  we have a_n  +a_(n+1) =(1/(n+1)) ⇒  Σ_(k=0) ^n (−1)^k (a_k  +a_(k+1) ) =Σ_(k=0) ^n  (((−1)^k )/(k+1)) ⇒  (a_0 +a_1 )−(a_1 +a_2 )+.....(−1)^(n−1) (a_(n−1)  +a_n ) +(−1)^n (a_(n ) +a_(n+1) )  =Σ_(k=0) ^n  (((−1)^k )/(k+1)) ⇒a_0 +(−1)^n  a_(n+1) =Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k)  (−1)^n  a_(n+1) =−a_0 −Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k) ⇒  a_(n+1) =(−1)^(n+1)  a_0  +(−1)^(n+1)  Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k) ⇒  a_n =(−1)^n  a_0  +(−1)^n  Σ_(k=1) ^n  (((−1)^(k−1) )/k)  (for n>0)   ⇒  Σ_(n=0) ^∞  a_n x^n  =a_0  Σ_(n=0) ^∞ (−1)^n  x^n  +Σ_(n=0) ^∞ (−1)^n {Σ_(k=1) ^(n ) (((−1)^(k−1) )/k)} x^n   =(a_0 /(x+1)) +Σ_(n=0) ^∞  (−1)^(n ) { Σ_(k=1) ^n  (((−1)^(k−1) )/k)}x^n

anotherwaywecanexplicitanwehavean+an+1=1n+1k=0n(1)k(ak+ak+1)=k=0n(1)kk+1(a0+a1)(a1+a2)+.....(1)n1(an1+an)+(1)n(an+an+1)=k=0n(1)kk+1a0+(1)nan+1=k=1n+1(1)k1k(1)nan+1=a0k=1n+1(1)k1kan+1=(1)n+1a0+(1)n+1k=1n+1(1)k1kan=(1)na0+(1)nk=1n(1)k1k(forn>0)n=0anxn=a0n=0(1)nxn+n=0(1)n{k=1n(1)k1k}xn=a0x+1+n=0(1)n{k=1n(1)k1k}xn

Commented by mathmax by abdo last updated on 05/Jun/20

∣x∣<1

x∣<1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com