Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96955 by mathmax by abdo last updated on 05/Jun/20

let f(x) =ln(1+sinx)   developp f at fourier serie

letf(x)=ln(1+sinx)developpfatfourierserie

Answered by mathmax by abdo last updated on 06/Jun/20

f(x) =ln(1+sinx) ⇒f^′ (x) =((cosx)/(1+sinx)) =(((e^(ix)  +e^(−ix) )/2)/(1+((e^(ix) −e^(−ix) )/(2i))))  =i((e^(ix)  +e^(−ix) )/(2i +e^(ix) −e^(−ix) )) =_(e^(ix) =z)   i((z+z^(−1) )/(2i+z−z^(−1) )) =i×((z^2  +1)/(2iz +z^2 −1))  =i×((z^2  +1)/(z^2 +2iz −1)) =i ((z^2  +1)/((z+i)^2 )) =i ((z^2  +1)/(−(1−iz)^2 )) =−i((z^2  +1)/((1−iz)^2 )) we have  (1/(1−iz)) =Σ_(n=0) ^∞  (iz)^n  =Σ_(n=0) ^∞ i^n  z^n  ⇒(i/((1−iz)^2 )) =Σ_(n=1) ^∞  ni^n  z^(n−1)  ⇒  f^′ (x) =−i(z^2  +1)Σ_(n=1) ^∞  ni^n  z^(n−1)   =−(z^2  +1)Σ_(n=1) ^∞  n i^(n+1)  z^(n−1)  =−Σ_(n=1) ^∞  ni^(n+1) z^(n+1)  −Σ_(n=1) ^∞  ni^(n+1)  z^(n−1)   =−Σ_(n=1) ^∞  ni^(n+1) e^(i(n+1)x)  −Σ_(n=1) ^∞  ni^(n+1) e^(i(n−1)x)   =−Σ_(n=1) ^∞  ni^(n+1) {cos(n+1)x +isin(n+1)x}−Σ_(n=1) ^∞  ni^(n+1) {cos(n−1)x+isin(n−1)x}  =−Σ_(n=1) ^∞  n i^(n+1) ( cos(n+1)x+cos(n−1)x)+Σ_(n=1) ^∞  ni^n (sin(n+1)x+sin(n−1)x)  =−Σ_(n=1) ^∞  (2n)(−1)^n i(cos(2n+1)x+cos(2n−1)x)  +Σ_(n=0) ^∞  (2n+1)(−1)^n (cos(2n+2)x +cos(2nx))+Σ_(n=1) ^∞ (2n)(−1)^n (sin(2n+1)x+sin(2n−1)x)  +Σ_(n=0) ^∞  (2n+1)(−1)^n i{sin(2n+2)x +sin(2n)x}  f^′ (x) is tlreal ⇒f^′ (x)=Σ_(n=0) ^∞  (2n+1)(−1)^n {cos(2n+2)x +cos(2nx)}  +Σ_(n=1) ^∞  (2n)(−1)^n {sin(2n+1)x) +sin(2n−1)x} ⇒  f(x) =Σ_(n=0) ^∞  (2n+1)(−1)^n {(1/(2n+2))sin(2n+2)x+(1/(2n))sin(2nx)}  +Σ_(n=1) ^∞  (2n)(−1)^n {−(1/(2n+1)) cos(2n+1)x −(1/(2n−1)) cos(2n−1)x} +C  rest to find C....be continued....

f(x)=ln(1+sinx)f(x)=cosx1+sinx=eix+eix21+eixeix2i=ieix+eix2i+eixeix=eix=ziz+z12i+zz1=i×z2+12iz+z21=i×z2+1z2+2iz1=iz2+1(z+i)2=iz2+1(1iz)2=iz2+1(1iz)2wehave11iz=n=0(iz)n=n=0inzni(1iz)2=n=1ninzn1f(x)=i(z2+1)n=1ninzn1=(z2+1)n=1nin+1zn1=n=1nin+1zn+1n=1nin+1zn1=n=1nin+1ei(n+1)xn=1nin+1ei(n1)x=n=1nin+1{cos(n+1)x+isin(n+1)x}n=1nin+1{cos(n1)x+isin(n1)x}=n=1nin+1(cos(n+1)x+cos(n1)x)+n=1nin(sin(n+1)x+sin(n1)x)=n=1(2n)(1)ni(cos(2n+1)x+cos(2n1)x)+n=0(2n+1)(1)n(cos(2n+2)x+cos(2nx))+n=1(2n)(1)n(sin(2n+1)x+sin(2n1)x)+n=0(2n+1)(1)ni{sin(2n+2)x+sin(2n)x}f(x)istlrealf(x)=n=0(2n+1)(1)n{cos(2n+2)x+cos(2nx)}+n=1(2n)(1)n{sin(2n+1)x)+sin(2n1)x}f(x)=n=0(2n+1)(1)n{12n+2sin(2n+2)x+12nsin(2nx)}+n=1(2n)(1)n{12n+1cos(2n+1)x12n1cos(2n1)x}+CresttofindC....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com