All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 96956 by mathmax by abdo last updated on 05/Jun/20
calculate∫−∞∞x2−3(x2−x+1)3dx
Answered by MJS last updated on 06/Jun/20
Ostrogradskileadsto∫x2−3(x2−x+1)3dx==−10x3−15x2+22x−76(x2−x+1)2−53∫dxx2−x+1==−10x3−15x2+22x−76(x2−x+1)2−1039arctan3(2x−1)3+C⇒∫+∞−∞x2−3(x2−x+1)3dx=−1039π
Commented by abdomathmax last updated on 06/Jun/20
thankxsirmjs
Answered by abdomathmax last updated on 06/Jun/20
A=∫−∞+∞x2−3(x2−x+1)3dxletφ(z)=z2−3(x2−x+1)3x2−x+1=0→Δ=−3⇒x1=1+i32=eiπ3x2=1−i32=e−iπ3⇒φ(z)=z2−3(z−eiπ3)3(z−e−iπ3)3∫−∞+∞φ(z)dz=2iπRes(φ,eiπ3)Res(φ,eiπ3)=limz→eiπ31(3−1)!{(z−eiπ3)3φ(z)}(2)=limz→eiπ312{z2−3(z−e−iπ3)3}(2)=12limz→eiπ3{2z(z−e−iπ3)3−3(z−e−iπ3)2(z2−3)(z−e−iπ3)6}(1)=12limz→eiπ3{2z(z−e−iπ3)−3(z2−3)(z−e−iπ3)4}(1)....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com