Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96956 by mathmax by abdo last updated on 05/Jun/20

calculate ∫_(−∞) ^∞   ((x^2 −3)/((x^2 −x+1)^3 ))dx

calculatex23(x2x+1)3dx

Answered by MJS last updated on 06/Jun/20

Ostrogradski leads to  ∫((x^2 −3)/((x^2 −x+1)^3 ))dx=  =−((10x^3 −15x^2 +22x−7)/(6(x^2 −x+1)^2 ))−(5/3)∫(dx/(x^2 −x+1))=  =−((10x^3 −15x^2 +22x−7)/(6(x^2 −x+1)^2 ))−((10(√3))/9)arctan (((√3)(2x−1))/3) +C  ⇒  ∫_(−∞) ^(+∞) ((x^2 −3)/((x^2 −x+1)^3 ))dx=−((10(√3))/9)π

Ostrogradskileadstox23(x2x+1)3dx==10x315x2+22x76(x2x+1)253dxx2x+1==10x315x2+22x76(x2x+1)21039arctan3(2x1)3+C+x23(x2x+1)3dx=1039π

Commented by abdomathmax last updated on 06/Jun/20

thankx sir mjs

thankxsirmjs

Answered by abdomathmax last updated on 06/Jun/20

A =∫_(−∞) ^(+∞)  ((x^2 −3)/((x^2 −x+1)^3 ))dx let ϕ(z) =((z^2 −3)/((x^2 −x+1)^3 ))  x^2 −x+1 =0 →Δ =−3 ⇒x_1 =((1+i(√3))/2) =e^((iπ)/3)   x_2 =((1−i(√3))/2) =e^(−((iπ)/3))  ⇒ϕ(z) =((z^2 −3)/((z−e^((iπ)/3) )^3 (z−e^(−((iπ)/3)) )^3 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,e^((iπ)/3) )  Res(ϕ,e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )    (1/((3−1)!)){(z−e^((iπ)/3) )^3  ϕ(z)}^((2))   =lim_(z→e^((iπ)/3) )    (1/2){((z^2 −3)/((z−e^(−((iπ)/3)) )^3 ))}^((2))   =(1/2)lim_(z→e^((iπ)/3) )   { ((2z(z−e^(−((iπ)/3)) )^3  −3(z−e^(−((iπ)/3)) )^2 (z^2 −3))/((z−e^(−((iπ)/3)) )^6 ))}^((1))   =(1/2)lim_(z→e^((iπ)/3) )   {((2z(z−e^(−((iπ)/3)) )−3(z^2 −3))/((z−e^(−((iπ)/3)) )^4 ))}^((1))   ....be continued....

A=+x23(x2x+1)3dxletφ(z)=z23(x2x+1)3x2x+1=0Δ=3x1=1+i32=eiπ3x2=1i32=eiπ3φ(z)=z23(zeiπ3)3(zeiπ3)3+φ(z)dz=2iπRes(φ,eiπ3)Res(φ,eiπ3)=limzeiπ31(31)!{(zeiπ3)3φ(z)}(2)=limzeiπ312{z23(zeiπ3)3}(2)=12limzeiπ3{2z(zeiπ3)33(zeiπ3)2(z23)(zeiπ3)6}(1)=12limzeiπ3{2z(zeiπ3)3(z23)(zeiπ3)4}(1)....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com