Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96962 by mathmax by abdo last updated on 05/Jun/20

find  ∫_0 ^1  (dx/((√(x+1))+(√(2x^2 +1))))

$$\mathrm{find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\sqrt{\mathrm{x}+\mathrm{1}}+\sqrt{\mathrm{2x}^{\mathrm{2}} +\mathrm{1}}} \\ $$

Answered by MJS last updated on 06/Jun/20

∫(dx/((√(x+1))+(√(2x^2 +1))))=∫((√(2x^2 +1))/(2x^2 −x))dx−∫((√(x+1))/(2x^2 −x))dx    ∫((√(2x^2 +1))/(2x^2 −x))dx=       [t=(√2)x+(√(2x^2 +1)) → dx=((√(2x^2 +1))/(2x+(√(2(2x^2 +1)))))]  =∫((t^4 +2t^2 +1)/(t(t^2 −1)(t^2 −(√2)t−1)))dt=  =((√6)/2)∫(dt/(t−(((√6)+(√2))/2)))−((√6)/2)∫(dt/(t+(((√6)−(√2))/2)))−∫(dt/(t−1))+∫(dt/(t+1))+((√2)/2)∫(dt/t)=  =((√6)/2)ln (((√2)t−1−(√3))/((√2)t−1+(√3))) +ln ((t+1)/(t−1)) +((√2)/2)ln t    −∫((√(x+1))/(2x^2 −x))dx=       [u=(√(x+1)) → dx=2(√(x+1))du]  =−2∫(u^2 /((u^2 −1)(2u^2 −3)))du=  =−((√6)/2)∫(du/(u−((√6)/2)))+((√6)/2)∫(du/(u+((√6)/2)))+∫(du/(u−1))−∫(du/(u+1))=  =((√6)/2)ln (((√2)u+(√3))/((√2)u−(√3))) +ln ((u−1)/(u+1))    the problem is now, the sum of these integrals  seems to diverge but approximation of the  original integral gives ≈.409087

$$\int\frac{{dx}}{\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}}=\int\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}{x}^{\mathrm{2}} −{x}}{dx}−\int\frac{\sqrt{{x}+\mathrm{1}}}{\mathrm{2}{x}^{\mathrm{2}} −{x}}{dx} \\ $$$$ \\ $$$$\int\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}{x}^{\mathrm{2}} −{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\mathrm{2}}{x}+\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}\:\rightarrow\:{dx}=\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}{x}+\sqrt{\mathrm{2}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)}}\right] \\ $$$$=\int\frac{{t}^{\mathrm{4}} +\mathrm{2}{t}^{\mathrm{2}} +\mathrm{1}}{{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)}{dt}= \\ $$$$=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\int\frac{{dt}}{{t}−\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{2}}}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\int\frac{{dt}}{{t}+\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{2}}}−\int\frac{{dt}}{{t}−\mathrm{1}}+\int\frac{{dt}}{{t}+\mathrm{1}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{dt}}{{t}}= \\ $$$$=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\mathrm{ln}\:\frac{\sqrt{\mathrm{2}}{t}−\mathrm{1}−\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}{t}−\mathrm{1}+\sqrt{\mathrm{3}}}\:+\mathrm{ln}\:\frac{{t}+\mathrm{1}}{{t}−\mathrm{1}}\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:{t} \\ $$$$ \\ $$$$−\int\frac{\sqrt{{x}+\mathrm{1}}}{\mathrm{2}{x}^{\mathrm{2}} −{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{u}=\sqrt{{x}+\mathrm{1}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}+\mathrm{1}}{du}\right] \\ $$$$=−\mathrm{2}\int\frac{{u}^{\mathrm{2}} }{\left({u}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{3}\right)}{du}= \\ $$$$=−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\int\frac{{du}}{{u}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\int\frac{{du}}{{u}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}}+\int\frac{{du}}{{u}−\mathrm{1}}−\int\frac{{du}}{{u}+\mathrm{1}}= \\ $$$$=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\mathrm{ln}\:\frac{\sqrt{\mathrm{2}}{u}+\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}{u}−\sqrt{\mathrm{3}}}\:+\mathrm{ln}\:\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{now},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{these}\:\mathrm{integrals} \\ $$$$\mathrm{seems}\:\mathrm{to}\:\mathrm{diverge}\:\mathrm{but}\:\mathrm{approximation}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{original}\:\mathrm{integral}\:\mathrm{gives}\:\approx.\mathrm{409087} \\ $$

Commented by mathmax by abdo last updated on 06/Jun/20

thank you sir.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com