Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 97001 by bemath last updated on 06/Jun/20

solve (1+x^2 ) (dy/dx) = xy−xy^2

solve(1+x2)dydx=xyxy2

Commented by bobhans last updated on 06/Jun/20

(dy/dx) = ((x(y−y^2 ))/(x^2 +1)) ⇔ (dy/(y−y^2 )) = ((x dx)/(x^2 +1))  (dy/(y(1−y))) = ((d(x^2 +1))/(2(x^2 +1))) ⇔ ((y+1−y)/(y(1−y))) dy = (1/2)ln(x^2 +1) + c  ∫ (dy/y) + ∫ (dy/(1−y)) = (1/2)lnC(x^2 +1)  ln∣(y/(1−y))∣ = ln(√(C(x^2 +1))) ⇔ ∣(y/(1−y))∣ = (√(C(x^2 +1)))

dydx=x(yy2)x2+1dyyy2=xdxx2+1dyy(1y)=d(x2+1)2(x2+1)y+1yy(1y)dy=12ln(x2+1)+cdyy+dy1y=12lnC(x2+1)lny1y=lnC(x2+1)y1y=C(x2+1)

Commented by bemath last updated on 06/Jun/20

thanks

thanks

Answered by mathmax by abdo last updated on 06/Jun/20

e⇒(dy/(xy−xy^2 )) =(dx/(1+x^2 )) ⇒(dy/(y−y^2 )) =((xdx)/(1+x^2 )) ⇒  ∫ (dy/(y−y^2 )) =∫ ((xdx)/(1+x^2 )) =(1/2)ln(1+x^2 ) but  ∫ (dy/(y−y^2 )) =−∫ (dy/(y(y−1))) =−∫((1/(y−1))−(1/y))dy =∫((1/y)−(1/(y−1)))dy  =ln∣(y/(y−1))∣ ⇒ln∣(y/(y−1))∣ =ln(√(1+x^2 )) +c ⇒∣(y/(y−1))∣ =k (√(1+x^2 )) ⇒  (y/(y−1)) =k(√(1+x^2 )) ⇒((y−1+1)/(y−1)) =k(√(1+x^2 )) ⇒1+(1/(y−1)) =k(√(1+x^2 )) ⇒  (1/(y−1)) =k(√(1+x^2 ))−1 ⇒y−1 =(1/(k(√(1+x^2 ))−1)) ⇒y =1+(1/(k(√(1+x^2 ))−1))

edyxyxy2=dx1+x2dyyy2=xdx1+x2dyyy2=xdx1+x2=12ln(1+x2)butdyyy2=dyy(y1)=(1y11y)dy=(1y1y1)dy=lnyy1lnyy1=ln1+x2+c⇒∣yy1=k1+x2yy1=k1+x2y1+1y1=k1+x21+1y1=k1+x21y1=k1+x21y1=1k1+x21y=1+1k1+x21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com