All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 97041 by bemath last updated on 06/Jun/20
∫sin8(x)cos8(x)dx=?
Answered by john santu last updated on 06/Jun/20
⇒sin8x.cos8x=sin8(2x)28sin(2x)=e2ix−e−2ix2isin8x.cos8x=(e2ix−e−2ix)8216I=1215∫(cos16x+8cos12x+56cos4x+35)dxI=1215(sin16x16+8sin12x12+56sin4x4+35x)+c
Answered by Sourav mridha last updated on 06/Jun/20
letsinx=m∫(1−m2)7m8dm=∫[∑7r=0C7r(1)7−r.(−m2)r.].m8dm=∑7r=0(−1)rC7r[∫m2r+8dm]=∑7r=0(−1)rC7r(sin(x))2r+92r+9.+k
Terms of Service
Privacy Policy
Contact: info@tinkutara.com