Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 97108 by  M±th+et+s last updated on 06/Jun/20

1)find (dy/dx)  y=(sin(x))^(cos^(−1) (x))     2)lim_(x→∞) x^(1/x)

1)finddydxy=(sin(x))cos1(x)2)limxx1x

Commented by  M±th+et+s last updated on 06/Jun/20

thanks for solutions

thanksforsolutions

Answered by Sourav mridha last updated on 06/Jun/20

1)(dy/dx)=(d/dx)e^(cos^(−1) (x).lnsin(x))               =(sin(x))^(cos^(−1) (x)) [cotx.cos^(−1) (x)−((ln(sin(x)))/(√(1−x^2 )))]

1)dydx=ddxecos1(x).lnsin(x)=(sin(x))cos1(x)[cotx.cos1(x)ln(sin(x))1x2]

Answered by Sourav mridha last updated on 06/Jun/20

2)u=x^(1/x) ⇒  ⇒ln(u)=((ln(x))/x)  ⇒lim_(x→∞) [ln(u)]=lim_(x→∞) [((ln(x))/x)]{(∞/∞) form using LHopital}                                  =0  ⇒lim_(x→∞) [(u)]=e^0 =1

2)u=x1xln(u)=ln(x)xlimx[ln(u)]=limx[ln(x)x]{formusingLHopital}=0limx[(u)]=e0=1

Answered by abdomathmax last updated on 06/Jun/20

1) y =(sinx)^(arcosx)  ⇒y =e^(arcosxln(sinx))   ⇒(dy/dx) =(arcosxln(sin))^′ e^(arcosxln(sinx))   =(−((ln(sinx))/(√(1−x^2 )))+arcosx×cotanx)y(x)

1)y=(sinx)arcosxy=earcosxln(sinx)dydx=(arcosxln(sin))earcosxln(sinx)=(ln(sinx)1x2+arcosx×cotanx)y(x)

Answered by abdomathmax last updated on 06/Jun/20

2)let f(x)= x^(1/x)  ⇒f(x)=e^((1/x)lnx)  ⇒  lim_(x→+∞) f(x) =lim_(x→+∞)  e^((lnx)/x)   =e^o  =1

2)letf(x)=x1xf(x)=e1xlnxlimx+f(x)=limx+elnxx=eo=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com