Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 97117 by bobhans last updated on 06/Jun/20

lim_(h→0)  [ (1/h) ∫_2 ^(2+2h) (√(t^2 +2)) dt ]

limh0[1h2+2h2t2+2dt]

Answered by abdomathmax last updated on 06/Jun/20

let use hospital theorem ⇒  lim_(h→0)  ((∫_2 ^(2+2h) (√(t^2 +2))dt)/h)  =lim_(h→0)    2(√((2+2h)^2  +2))=2(√(4+2))=2(√6)  another way ∃c ∈]2,2+2h[ /A(h)=  (1/h)∫_2 ^(2+2h) (√(t^2  +2))dt =(1/h)(√(c^2  +2))∫_2 ^(2+2h)  dt  =2(√(c^2  +2))   (h→0) ⇒c→2 ⇒  lim_(h→0)  A(h) =2(√6)

letusehospitaltheoremlimh022+2ht2+2dth=limh02(2+2h)2+2=24+2=26anotherwayc]2,2+2h[/A(h)=1h22+2ht2+2dt=1hc2+222+2hdt=2c2+2(h0)c2limh0A(h)=26

Commented by bobhans last updated on 07/Jun/20

yes sir. thank you

yessir.thankyou

Commented by mathmax by abdo last updated on 07/Jun/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com