Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 97136 by I want to learn more last updated on 06/Jun/20

Evaluate    (3/(1! + 2! + 3!))  +  (4/(2! + 3! + 4!))  +  ... +  ((2001)/(1999!  +  2000!  +  2001!))

Evaluate31!+2!+3!+42!+3!+4!+...+20011999!+2000!+2001!

Commented by 06122004 last updated on 06/Jun/20

∗Yechim∗  n!+(n+1)!+(n+2)!=n!(1+(n+1)+(n+1)(n+2))=  =n!∗(n+2)^2   ⊛  (3/(1!∗3^2 ))+(4/(2!∗4^2 ))+...+((2001)/(1999!∗2001^2 ))=  =(1/(1!∗3))+(1/(2!∗4))+...+(1/(1999!∗2001))=  =(2/(3!))+(3/(4!))+...+((2000)/(2001!))=  =((3−1)/(3!))+((4−1)/(4!))+...+((2001−1)/(2001!))=  =(1/(2!))−(1/(3!))+(1/(3!))−(1/(4!))+...+(1/(2000!))−(1/(2001!))=  =(1/(2!))−(1/(2001!))=((((2001!)/2)−1)/(2001!))=((2001!−2)/(2∗2001!))  ▲  ∗Javob∗ ((2001!−2)/(2∗2001!))  Abdullaxatov Jasurbek

Yechimn!+(n+1)!+(n+2)!=n!(1+(n+1)+(n+1)(n+2))==n!(n+2)231!32+42!42+...+20011999!20012==11!3+12!4+...+11999!2001==23!+34!+...+20002001!==313!+414!+...+200112001!==12!13!+13!14!+...+12000!12001!==12!12001!=2001!212001!=2001!222001!Javob2001!222001!AbdullaxatovJasurbek

Commented by I want to learn more last updated on 06/Jun/20

Thanks sir.

Thankssir.

Commented by 06122004 last updated on 06/Jun/20

ok!

ok!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com