All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 97218 by bobhans last updated on 07/Jun/20
∫3−2∣x−2∣⌊x2⌋sgn(x−1)dx
Answered by john santu last updated on 07/Jun/20
sgn(x−1)=1,whenx>1sgn(x−1)=−1,whenx<1J=−∫1−2∣x−2∣⌊x2⌋dx+∫31∣x−2∣⌊x2⌋dxJ=∫1−2(x−2)⌊x2⌋dx−∫21(x−2)⌊x2⌋dx+∫32(x−2)⌊x2⌋dxJ=∫3−2(x−2)⌊x2⌋dx−2∫21(x−2)⌊x2⌋dxletx=2zJ=∫32−1(2z−2)⌊z⌋.2dz−2∫112(2z−2)⌊z⌋.2dzJ=∫32−1(4z−4)⌊z⌋dz−∫112(8z−8)⌊z⌋dzJ=∫0−1(4−4z)dz+∫321(4z−4)dzJ=[(4z−2z2)]−10+[(2z2−4z)]132J=0−(−4−2)+2(94−1)−4(32−1)J=6+2(54)−4(12)J=6+52−2=4+52=132
Answered by mathmax by abdo last updated on 07/Jun/20
A=∫−23∣x−2∣[x2]δ(x−1)dxwithδ(x−1)=1ifx>1andδ(x−1)=−1ifx<1changementx2=tgiveA=∫−132∣2t−2∣[t]δ(2t−1)2dt=4∫−132∣t−1∣[t]δ(2t−1)dt=4(∫−10(1−t)(−1)(−1)dt+∫012(1−t)0(−1)dt+∫121(1−t)0(1)dt+∫132(t−1)1dt)=4(∫−10(1−t)dt+∫132(t−1)dt)=4{[t−t22]−10+[t22−t]132}=4{−(−1−12)+98−32−(−12)}=4{98+12}=92+2=132
Terms of Service
Privacy Policy
Contact: info@tinkutara.com