Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 97230 by mathmax by abdo last updated on 07/Jun/20

1) developp at fourier serie f(x)=ln(sinx)  2) developp at fourier serie g(x)=ln(cosx +sinx)  3)developp at fourier seri e h(x) =ln(cosx +2sinx)

1)developpatfourierserief(x)=ln(sinx)2)developpatfourierserieg(x)=ln(cosx+sinx)3)developpatfourierserieh(x)=ln(cosx+2sinx)

Answered by mathmax by abdo last updated on 07/Jun/20

1)we have f^′ (x) =((cosx)/(sinx)) =((e^(ix)  +e^(−ix) )/((e^(ix) −e^(−ix) )/i)) =i ((e^(ix) +e^(−ix) )/(e^x −e^(−ix) ))  changement e^(ix)  =z give  f^′ (x) =i((z+z^(−1) )/(z−z^(−1) )) =i ((z^2  +1)/(z^2 −1)) =−i ((z^2 +1)/(1−z^2 )) =−i(z^2  +1)Σ_(n=0) ^∞  z^(2n)   =−iΣ_(n=0) ^∞  (z^(2n+2)  +z^(2n) ) =−i Σ_(n=0) ^∞ e^(i(2n+2)x)  −i Σ_(n=0) ^∞  e^(i2nx)   =−i{ Σ_(n=0) ^∞  (cos(2n+2)x +isin(2n+2)x) +Σ_(n=0) ^∞ ( cos(2nx)+isin(2nx))}  =−i(Σ_(n=0) ^∞  cos(2n+2)x+Σ_(n=0) ^∞  cos(2nx)) +Σ_(n=0) ^∞  sin(2n+2)x +Σ_(n=0) ^∞  sin(2nx)  but f^′ (x) is real ⇒f^′ (x) =Σ_(n=0) ^∞  sin(2n+2)x +Σ_(n=0) ^∞  sin(2nx)  =Σ_(n=1) ^∞  sin(2nx) +Σ_(n=1) ^∞  sin(2nx) =2 Σ_(n=1) ^∞  sin(2nx) ⇒  f(x) =2Σ_(n=1) ^∞  (−(1/(2n)))cos(2nx) +C =−Σ_(n=1) ^∞  ((cos(2nx))/n) +C  f((π/2)) =0 =−Σ_(n=1) ^∞  ((cos(nπ))/n) +C =−Σ_(n=1) ^∞  (((−1)^n )/n) +C =ln2 +C ⇒  C =−ln2 ⇒f(x) =−Σ_(n=1) ^∞  ((cos(2nx))/n) −ln(2)

1)wehavef(x)=cosxsinx=eix+eixeixeixi=ieix+eixexeixchangementeix=zgivef(x)=iz+z1zz1=iz2+1z21=iz2+11z2=i(z2+1)n=0z2n=in=0(z2n+2+z2n)=in=0ei(2n+2)xin=0ei2nx=i{n=0(cos(2n+2)x+isin(2n+2)x)+n=0(cos(2nx)+isin(2nx))}=i(n=0cos(2n+2)x+n=0cos(2nx))+n=0sin(2n+2)x+n=0sin(2nx)butf(x)isrealf(x)=n=0sin(2n+2)x+n=0sin(2nx)=n=1sin(2nx)+n=1sin(2nx)=2n=1sin(2nx)f(x)=2n=1(12n)cos(2nx)+C=n=1cos(2nx)n+Cf(π2)=0=n=1cos(nπ)n+C=n=1(1)nn+C=ln2+CC=ln2f(x)=n=1cos(2nx)nln(2)

Commented by mathmax by abdo last updated on 07/Jun/20

2) g(x) =ln(cosx +sinx) ⇒g(x) =ln((√2)sin(x+(π/4)))  =(1/2)ln(2) +ln(x+(π/4)) =(1/2)ln(2)−Σ_(n=1) ^∞  ((cos(2n(x+(π/4))))/n)−ln(2)  =−((ln(2))/2) −Σ_(n=1) ^∞  ((cos(2nx +n(π/2)))/n)

2)g(x)=ln(cosx+sinx)g(x)=ln(2sin(x+π4))=12ln(2)+ln(x+π4)=12ln(2)n=1cos(2n(x+π4))nln(2)=ln(2)2n=1cos(2nx+nπ2)n

Commented by mathmax by abdo last updated on 07/Jun/20

3)h(x) =ln(cosx +2sinx) we have cosx +2sinx =(√5)((1/(√5))cosx +(2/(√5))sinx)  let sinα =(1/(√5)) and cosα =(2/(√5)) ⇒tanα =(1/2) ⇒α =arctan((1/2)) ⇒  cosx +2sinx =(√5)sin(x+α) ⇒h(x) =(1/2)ln5 +ln(sin(x+α))  =((ln5)/2)−Σ_(n=1) ^∞  ((cos(2n(x+α)))/n) −ln(2)  =((ln5)/2)−ln(2) −Σ_(n=1) ^∞  ((cos(2nx+2n arctan((1/2))))/n)

3)h(x)=ln(cosx+2sinx)wehavecosx+2sinx=5(15cosx+25sinx)letsinα=15andcosα=25tanα=12α=arctan(12)cosx+2sinx=5sin(x+α)h(x)=12ln5+ln(sin(x+α))=ln52n=1cos(2n(x+α))nln(2)=ln52ln(2)n=1cos(2nx+2narctan(12))n

Answered by mathmax by abdo last updated on 07/Jun/20

another method for f(x) =ln(sinx) we have  f(x) =ln(((e^(ix) −e^(−ix) )/(2i))) =ln(e^(ix) −e^(−ix) )−ln(2i)  =ln(e^(ix) )+ln(1−e^(−2ix) )−ln(2i) =ix −ln2−lni +ln(1−e^(−2ix) )    =ix−ln(2)−((iπ)/2) −Σ_(n=1) ^∞  (e^(−2inx) /n)  =i(x−(π/2))−Σ_(n=1) ^∞  ((cos(2nx))/n) +i Σ_(n=1) ^∞  ((sin(2nx))/n) −ln(2)  f(x)∈R ⇒f(x) =−Σ_(n=1) ^∞  ((cos(2nx))/n)−ln(2) also we get  Σ_(n=1) ^∞  ((sin(2nx))/n) =(π/2)−x

anothermethodforf(x)=ln(sinx)wehavef(x)=ln(eixeix2i)=ln(eixeix)ln(2i)=ln(eix)+ln(1e2ix)ln(2i)=ixln2lni+ln(1e2ix)=ixln(2)iπ2n=1e2inxn=i(xπ2)n=1cos(2nx)n+in=1sin(2nx)nln(2)f(x)Rf(x)=n=1cos(2nx)nln(2)alsowegetn=1sin(2nx)n=π2x

Terms of Service

Privacy Policy

Contact: info@tinkutara.com