All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 97235 by bobhans last updated on 07/Jun/20
∫10ln(x)ln(1−x)dx?
Answered by abdomathmax last updated on 07/Jun/20
I=∫01lnxln(1−x)dxwehavefor∣x∣<1ddxln(1−x)=−11−x=−∑n=0∞xn⇒ln(1−x)=−∑n=0∞xn+1n+1=−∑n=1∞xnn⇒I=−∫01ln(x)(∑n=1∞xnn)=−∑n=1∞1n∫01xnln(x)dxbypartsAn=∫01xnln(x)dx=[xn+1n+1ln(x)]01−∫01xn+1n+1dxx=−1n+1∫01xndx=−1(n+1)2⇒I=∑n=1∞1n(n+1)2letdecomposeF(x)=1x(x+1)2⇒F(x)=ax+bx+1+c(x+1)2a=1,c=−1limx→+∞xF(x)=0=a+b⇒b=−1⇒F(x)=1x−1x+1−1(x+1)2⇒I=∑n=1∞(1n−1n+1)−∑n=1∞1(n+1)2∑n=1∞(1n−1n+1)=limn→∞∑k=1n(1k−1k+1)limn→∞(1−1n+1)=1∑n=1∞1(n+1)2=∑n=2∞1n2=π26−1⇒I=1−(π26−1)=2−π26
Commented by bobhans last updated on 07/Jun/20
thankyou.great
Terms of Service
Privacy Policy
Contact: info@tinkutara.com