Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97235 by bobhans last updated on 07/Jun/20

∫_0 ^1  ln(x) ln(1−x) dx ?

10ln(x)ln(1x)dx?

Answered by abdomathmax last updated on 07/Jun/20

I =∫_0 ^1  lnxln(1−x)dx  we have for ∣x∣<1  (d/dx)ln(1−x) =((−1)/(1−x)) =−Σ_(n=0) ^∞  x^n  ⇒  ln(1−x) =−Σ_(n=0) ^∞  (x^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (x^n /n) ⇒  I  =−∫_0 ^1 ln(x)(Σ_(n=1) ^∞  (x^n /n)) =−Σ_(n=1) ^∞  (1/n) ∫_0 ^1  x^n ln(x)dx  by parts A_n =∫_0 ^1  x^n ln(x)dx  =[(x^(n+1) /(n+1))ln(x)]_0 ^1  −∫_0 ^1  (x^(n+1) /(n+1))(dx/x) =−(1/(n+1)) ∫_0 ^(1 ) x^n  dx  =−(1/((n+1)^2 )) ⇒I =Σ_(n=1) ^∞  (1/(n(n+1)^2 ))  let decompose F(x)=(1/(x(x+1)^2 )) ⇒  F(x) =(a/x) +(b/(x+1)) +(c/((x+1)^2 ))  a =1 , c =−1  lim_(x→+∞) xF(x) =0 =a+b ⇒b=−1 ⇒  F(x) =(1/x)−(1/(x+1))−(1/((x+1)^2 )) ⇒  I =Σ_(n=1) ^∞ ((1/n)−(1/(n+1))) −Σ_(n=1) ^∞  (1/((n+1)^2 ))  Σ_(n=1) ^∞ ((1/n)−(1/(n+1)))=lim_(n→∞) Σ_(k=1) ^n ((1/k)−(1/(k+1)))  lim_(n→∞) (1−(1/(n+1))) =1  Σ_(n=1) ^∞  (1/((n+1)^2 )) =Σ_(n=2) ^∞  (1/n^2 ) =(π^2 /6)−1 ⇒  I =1−((π^2 /6)−1) =2−(π^2 /6)

I=01lnxln(1x)dxwehaveforx∣<1ddxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1=n=1xnnI=01ln(x)(n=1xnn)=n=11n01xnln(x)dxbypartsAn=01xnln(x)dx=[xn+1n+1ln(x)]0101xn+1n+1dxx=1n+101xndx=1(n+1)2I=n=11n(n+1)2letdecomposeF(x)=1x(x+1)2F(x)=ax+bx+1+c(x+1)2a=1,c=1limx+xF(x)=0=a+bb=1F(x)=1x1x+11(x+1)2I=n=1(1n1n+1)n=11(n+1)2n=1(1n1n+1)=limnk=1n(1k1k+1)limn(11n+1)=1n=11(n+1)2=n=21n2=π261I=1(π261)=2π26

Commented by bobhans last updated on 07/Jun/20

thank you. great

thankyou.great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com