Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 97250 by mathocean1 last updated on 07/Jun/20

Answered by 1549442205 last updated on 07/Jun/20

Commented by 1549442205 last updated on 07/Jun/20

a/Apply the formula of the median in the triangle  m_a =(1/2)(√(2(b^2 +c^2 )−a^2 ))⇔b^2 +c^2 =2m_a ^2 +(a^2 /2)  Sin MI is the median of the triangle BMC  we get MB^2 +MC^2 =2MI^2 +((BC^2 )/2)=2MI^2 +4(∗)(as BC=2(√2) )  we have IB=IC=(√2) .AI=(√(AB^2 −IB^2 )) =(√2)  .Let K be the point symetry to J through BC  then AJ=JK=(2/3)AI=((2(√2))/3),AK=((4(√2))/3)  Since MJ is the median of ΔMAK,  MA^2 +MK^2 =2MJ^2 +((AK^2 )/2)=2MJ^2 +((16)/9)(1)  Since MI is the median of ΔMJK,  MJ^2 +MK^2 =2MI^2 +((JK^2 )/2)=2MI^2 +(4/9)(2)  Substract two equalities (1),(2) we get  MA^2 −MJ^2 =2MJ^2 −2MI^2 +(4/3).Hence,  MA^2 +2MI^2 =3MJ^2 +(4/3)(3).  b/From (∗) and (3)  we get MA^2 +MB^2 +MC^2 =3MJ^2 +((16)/3)(∗∗)  c/Since the point J is fixed ,from (∗∗) and the   hypothesis  MA^2 +MB^2 +MC^2 =8 we  follow that 3MJ^2 +((16)/3)=8⇔MJ=((2(√2))/3)  which shows that set  (T) of the points M   satisfying MA^2 +MB^2 +MC^2 =8 lie on  the circle has the center be the point J  and the radius equal to ((2(√2))/3)

$$\mathrm{a}/\mathrm{Apply}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{of}\:\mathrm{the}\:\mathrm{median}\:\mathrm{in}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{m}_{\mathrm{a}} =\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}\left(\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \right)−\mathrm{a}^{\mathrm{2}} }\Leftrightarrow\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\mathrm{2m}_{\mathrm{a}} ^{\mathrm{2}} +\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{Sin}\:\mathrm{MI}\:\mathrm{is}\:\mathrm{the}\:\mathrm{median}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{BMC} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{MB}^{\mathrm{2}} +\mathrm{MC}^{\mathrm{2}} =\mathrm{2MI}^{\mathrm{2}} +\frac{\mathrm{BC}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2MI}^{\mathrm{2}} +\mathrm{4}\left(\ast\right)\left(\mathrm{as}\:\mathrm{BC}=\mathrm{2}\sqrt{\mathrm{2}}\:\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{IB}=\mathrm{IC}=\sqrt{\mathrm{2}}\:.\mathrm{AI}=\sqrt{\mathrm{AB}^{\mathrm{2}} −\mathrm{IB}^{\mathrm{2}} }\:=\sqrt{\mathrm{2}} \\ $$$$.\mathrm{Let}\:\mathrm{K}\:\mathrm{be}\:\mathrm{the}\:\mathrm{point}\:\mathrm{symetry}\:\mathrm{to}\:\mathrm{J}\:\mathrm{through}\:\mathrm{BC} \\ $$$$\mathrm{then}\:\mathrm{AJ}=\mathrm{JK}=\frac{\mathrm{2}}{\mathrm{3}}\mathrm{AI}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}},\mathrm{AK}=\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\mathrm{Since}\:\mathrm{MJ}\:\mathrm{is}\:\mathrm{the}\:\mathrm{median}\:\mathrm{of}\:\Delta\mathrm{MAK}, \\ $$$$\mathrm{MA}^{\mathrm{2}} +\mathrm{MK}^{\mathrm{2}} =\mathrm{2MJ}^{\mathrm{2}} +\frac{\mathrm{AK}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2MJ}^{\mathrm{2}} +\frac{\mathrm{16}}{\mathrm{9}}\left(\mathrm{1}\right) \\ $$$$\mathrm{Since}\:\mathrm{MI}\:\mathrm{is}\:\mathrm{the}\:\mathrm{median}\:\mathrm{of}\:\Delta\mathrm{MJK}, \\ $$$$\mathrm{MJ}^{\mathrm{2}} +\mathrm{MK}^{\mathrm{2}} =\mathrm{2MI}^{\mathrm{2}} +\frac{\mathrm{JK}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2MI}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{9}}\left(\mathrm{2}\right) \\ $$$$\mathrm{Substract}\:\mathrm{two}\:\mathrm{equalities}\:\left(\mathrm{1}\right),\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{MA}^{\mathrm{2}} −\mathrm{MJ}^{\mathrm{2}} =\mathrm{2MJ}^{\mathrm{2}} −\mathrm{2MI}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{3}}.\mathrm{Hence}, \\ $$$$\mathrm{MA}^{\mathrm{2}} +\mathrm{2MI}^{\mathrm{2}} =\mathrm{3MJ}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{3}\right). \\ $$$$\mathrm{b}/\mathrm{From}\:\left(\ast\right)\:\mathrm{and}\:\left(\mathrm{3}\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{MA}^{\mathrm{2}} +\mathrm{MB}^{\mathrm{2}} +\mathrm{MC}^{\mathrm{2}} =\mathrm{3MJ}^{\mathrm{2}} +\frac{\mathrm{16}}{\mathrm{3}}\left(\ast\ast\right) \\ $$$$\mathrm{c}/\mathrm{Since}\:\mathrm{the}\:\mathrm{point}\:\mathrm{J}\:\mathrm{is}\:\mathrm{fixed}\:,\mathrm{from}\:\left(\ast\ast\right)\:\mathrm{and}\:\mathrm{the}\: \\ $$$$\mathrm{hypothesis}\:\:\mathrm{MA}^{\mathrm{2}} +\mathrm{MB}^{\mathrm{2}} +\mathrm{MC}^{\mathrm{2}} =\mathrm{8}\:\mathrm{we} \\ $$$$\mathrm{follow}\:\mathrm{that}\:\mathrm{3MJ}^{\mathrm{2}} +\frac{\mathrm{16}}{\mathrm{3}}=\mathrm{8}\Leftrightarrow\mathrm{MJ}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\mathrm{which}\:\mathrm{shows}\:\mathrm{that}\:\mathrm{set}\:\:\left(\mathrm{T}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{points}\:\mathrm{M}\: \\ $$$$\mathrm{satisfying}\:\mathrm{MA}^{\mathrm{2}} +\mathrm{MB}^{\mathrm{2}} +\mathrm{MC}^{\mathrm{2}} =\mathrm{8}\:\mathrm{lie}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{circle}\:\mathrm{has}\:\mathrm{the}\:\mathrm{center}\:\mathrm{be}\:\mathrm{the}\:\mathrm{point}\:\mathrm{J} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{equal}\:\mathrm{to}\:\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$ \\ $$

Commented by mathocean1 last updated on 07/Jun/20

Thank you sir....great.

$${Thank}\:{you}\:{sir}....{great}. \\ $$

Commented by 1549442205 last updated on 08/Jun/20

you are wellcome!

$$\mathrm{you}\:\mathrm{are}\:\mathrm{wellcome}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com