Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 97266 by bobhans last updated on 07/Jun/20

If x &y satisfy the equation x^2 +y^2 −4x−6y−1 =0  find minimum value of x+y ?

$$\mathrm{If}\:\mathrm{x}\:\&\mathrm{y}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4x}−\mathrm{6y}−\mathrm{1}\:=\mathrm{0} \\ $$ $$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}\:? \\ $$

Commented bybobhans last updated on 07/Jun/20

f(x,y,λ) = x+y+λ(x^2 +y^2 −4x−6y−1)  (∂f/∂x) = 1+λ(2x−4)=0 ⇒λ = (1/(4−2x))  (∂f/∂y) = 1+λ(2y−6)=0 ⇒λ=(1/(6−2y))  so 4−2x = 6−2y ; y=1+x   substitute to constraint   x^2 +(x+1)^2 −4x−6(1+x)−1=0  2x^2 −8x−6=0 ; x^2 −4x−3=0  x = ((4 ±(√(28)))/2) = 2 ±(√7) ⇒ { ((x=2+(√7) ∧y=3+(√7))),((x=2−(√7) ∧y=3−(√7))) :}  so minimum value x+y = 5−2(√7) or 5 −(√(28))

$$\mathrm{f}\left(\mathrm{x},\mathrm{y},\lambda\right)\:=\:\mathrm{x}+\mathrm{y}+\lambda\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4x}−\mathrm{6y}−\mathrm{1}\right) \\ $$ $$\frac{\partial\mathrm{f}}{\partial\mathrm{x}}\:=\:\mathrm{1}+\lambda\left(\mathrm{2x}−\mathrm{4}\right)=\mathrm{0}\:\Rightarrow\lambda\:=\:\frac{\mathrm{1}}{\mathrm{4}−\mathrm{2x}} \\ $$ $$\frac{\partial\mathrm{f}}{\partial\mathrm{y}}\:=\:\mathrm{1}+\lambda\left(\mathrm{2y}−\mathrm{6}\right)=\mathrm{0}\:\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{6}−\mathrm{2y}} \\ $$ $$\mathrm{so}\:\mathrm{4}−\mathrm{2x}\:=\:\mathrm{6}−\mathrm{2y}\:;\:\mathrm{y}=\mathrm{1}+\mathrm{x}\: \\ $$ $$\mathrm{substitute}\:\mathrm{to}\:\mathrm{constraint}\: \\ $$ $$\mathrm{x}^{\mathrm{2}} +\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4x}−\mathrm{6}\left(\mathrm{1}+\mathrm{x}\right)−\mathrm{1}=\mathrm{0} \\ $$ $$\mathrm{2x}^{\mathrm{2}} −\mathrm{8x}−\mathrm{6}=\mathrm{0}\:;\:\mathrm{x}^{\mathrm{2}} −\mathrm{4x}−\mathrm{3}=\mathrm{0} \\ $$ $$\mathrm{x}\:=\:\frac{\mathrm{4}\:\pm\sqrt{\mathrm{28}}}{\mathrm{2}}\:=\:\mathrm{2}\:\pm\sqrt{\mathrm{7}}\:\Rightarrow\begin{cases}{\mathrm{x}=\mathrm{2}+\sqrt{\mathrm{7}}\:\wedge\mathrm{y}=\mathrm{3}+\sqrt{\mathrm{7}}}\\{\mathrm{x}=\mathrm{2}−\sqrt{\mathrm{7}}\:\wedge\mathrm{y}=\mathrm{3}−\sqrt{\mathrm{7}}}\end{cases} \\ $$ $$\mathrm{so}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{x}+\mathrm{y}\:=\:\mathrm{5}−\mathrm{2}\sqrt{\mathrm{7}}\:\mathrm{or}\:\mathrm{5}\:−\sqrt{\mathrm{28}} \\ $$

Answered by john santu last updated on 07/Jun/20

let x+y = k . because (x,y)  satisfy the circle x^2 +y^2 −4x−6y−1 = 0  then r = ((∣2+3−k∣)/((√2) )) = (√(14))  ⇔∣k−5∣ = (√(28 ))   { ((k_(max)  = 5 + (√(28)))),((k_(min)  = 5−(√(28)) )) :}

$$\mathrm{let}\:\mathrm{x}+\mathrm{y}\:=\:\mathrm{k}\:.\:\mathrm{because}\:\left(\mathrm{x},\mathrm{y}\right) \\ $$ $$\mathrm{satisfy}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4x}−\mathrm{6y}−\mathrm{1}\:=\:\mathrm{0} \\ $$ $$\mathrm{then}\:\mathrm{r}\:=\:\frac{\mid\mathrm{2}+\mathrm{3}−\mathrm{k}\mid}{\sqrt{\mathrm{2}}\:}\:=\:\sqrt{\mathrm{14}} \\ $$ $$\Leftrightarrow\mid\mathrm{k}−\mathrm{5}\mid\:=\:\sqrt{\mathrm{28}\:} \\ $$ $$\begin{cases}{\mathrm{k}_{\mathrm{max}} \:=\:\mathrm{5}\:+\:\sqrt{\mathrm{28}}}\\{\mathrm{k}_{\mathrm{min}} \:=\:\mathrm{5}−\sqrt{\mathrm{28}}\:}\end{cases} \\ $$

Commented bybobhans last updated on 07/Jun/20

great sir your short cut

$$\mathrm{great}\:\mathrm{sir}\:\mathrm{your}\:\mathrm{short}\:\mathrm{cut} \\ $$

Answered by Farruxjano last updated on 07/Jun/20

x^2 +y^2 −4x−6y−1=0, min{x+y}=?  x^2 +y^2 −4x−6y−1=0 ⇒(x−2)^2 +(y−3)^2 =14  (((x−2)/(√(14))))^2 +(((y−3)/(√(14))))^2 =1 ⇒  { ((((x−2)/(√(14)))=sin𝛂    )),((((y−3)/(√(14)))=cos𝛂)) :}⇒  ⇒  { ((x=(√(14))sin𝛂+2)),((y=(√(14))cos𝛂+3)) :}⇒x^2 +y^2 =14+  +4(√(14))sin𝛂+6(√(14))cos𝛂+4+9=  =[using this inequality: asin𝛂+bcos𝛂≥  −(√(a^2 +b^2 ))]=27+[4(√(14))sin𝛂+6(√(14))cos𝛂]≥  ≥27+(√(16∙14+36∙14))=27−(√(52∙14))=27−(√(728))

$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4x}−\mathrm{6y}−\mathrm{1}=\mathrm{0},\:\boldsymbol{{min}}\left\{\boldsymbol{{x}}+\boldsymbol{{y}}\right\}=? \\ $$ $$\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{{x}}−\mathrm{6}\boldsymbol{{y}}−\mathrm{1}=\mathrm{0}\:\Rightarrow\left(\boldsymbol{{x}}−\mathrm{2}\right)^{\mathrm{2}} +\left(\boldsymbol{{y}}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{14} \\ $$ $$\left(\frac{\boldsymbol{{x}}−\mathrm{2}}{\sqrt{\mathrm{14}}}\right)^{\mathrm{2}} +\left(\frac{\boldsymbol{{y}}−\mathrm{3}}{\sqrt{\mathrm{14}}}\right)^{\mathrm{2}} =\mathrm{1}\:\Rightarrow\:\begin{cases}{\frac{\boldsymbol{{x}}−\mathrm{2}}{\sqrt{\mathrm{14}}}=\boldsymbol{{sin}\alpha}\:\:\:\:}\\{\frac{\boldsymbol{{y}}−\mathrm{3}}{\sqrt{\mathrm{14}}}=\boldsymbol{{cos}\alpha}}\end{cases}\Rightarrow \\ $$ $$\Rightarrow\:\begin{cases}{\boldsymbol{{x}}=\sqrt{\mathrm{14}}\boldsymbol{{sin}\alpha}+\mathrm{2}}\\{\boldsymbol{{y}}=\sqrt{\mathrm{14}}\boldsymbol{{cos}\alpha}+\mathrm{3}}\end{cases}\Rightarrow\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} =\mathrm{14}+ \\ $$ $$+\mathrm{4}\sqrt{\mathrm{14}}\boldsymbol{{sin}\alpha}+\mathrm{6}\sqrt{\mathrm{14}}\boldsymbol{{cos}\alpha}+\mathrm{4}+\mathrm{9}= \\ $$ $$=\left[\boldsymbol{{using}}\:\boldsymbol{{this}}\:\boldsymbol{{inequality}}:\:\boldsymbol{{asin}\alpha}+\boldsymbol{{bcos}\alpha}\geqslant\right. \\ $$ $$\left.−\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }\right]=\mathrm{27}+\left[\mathrm{4}\sqrt{\mathrm{14}}\boldsymbol{{sin}\alpha}+\mathrm{6}\sqrt{\mathrm{14}}\boldsymbol{{cos}\alpha}\right]\geqslant \\ $$ $$\geqslant\mathrm{27}+\sqrt{\mathrm{16}\centerdot\mathrm{14}+\mathrm{36}\centerdot\mathrm{14}}=\mathrm{27}−\sqrt{\mathrm{52}\centerdot\mathrm{14}}=\mathrm{27}−\sqrt{\mathrm{728}} \\ $$

Commented bybobhans last updated on 07/Jun/20

sorry sir. it wrong

$$\mathrm{sorry}\:\mathrm{sir}.\:\mathrm{it}\:\mathrm{wrong} \\ $$

Commented bybobhans last updated on 07/Jun/20

it should be  { ((x = 2+(√(14)) cos α)),((y = 3+(√(14)) sin α)) :}  then x+y = 5 + (√(28)) cos (α−45^o ) ;  so min { x+y } = 5−(√(28)) .

$$\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\begin{cases}{{x}\:=\:\mathrm{2}+\sqrt{\mathrm{14}}\:\mathrm{cos}\:\alpha}\\{\mathrm{y}\:=\:\mathrm{3}+\sqrt{\mathrm{14}}\:\mathrm{sin}\:\alpha}\end{cases} \\ $$ $$\mathrm{then}\:{x}+{y}\:=\:\mathrm{5}\:+\:\sqrt{\mathrm{28}}\:\mathrm{cos}\:\left(\alpha−\mathrm{45}^{\mathrm{o}} \right)\:; \\ $$ $$\mathrm{so}\:\mathrm{min}\:\left\{\:{x}+{y}\:\right\}\:=\:\mathrm{5}−\sqrt{\mathrm{28}}\:.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com