Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 97307 by eidmarie last updated on 07/Jun/20

Commented by john santu last updated on 07/Jun/20

∫_1 ^∞  (((ln(5x+n)−ln(n))/n)) dx

1(ln(5x+n)ln(n)n)dx

Commented by bemath last updated on 07/Jun/20

[ x ln(5x+1)−x+(1/5)ln(5x+1)]_0 ^1   (ln(6)−1+(1/5)ln(6))−0  (6/5)ln(6)−1

[xln(5x+1)x+15ln(5x+1)]01(ln(6)1+15ln(6))065ln(6)1

Answered by Sourav mridha last updated on 07/Jun/20

lim_(n→∞) (1/n)Σ_(k=1) ^n ln[((5k)/n)+1]=∫_0 ^1 ln(5x+1)dx

limn1nnk=1ln[5kn+1]=01ln(5x+1)dx

Commented by ahmedeid last updated on 07/Jun/20

can you[solve[it[by[steps[sir

canyou[solve[it[by[steps[sir

Commented by bemath last updated on 07/Jun/20

using D.I method

usingD.Imethod

Commented by Sourav mridha last updated on 07/Jun/20

∫_0 ^1 ln(5x+1)dx=(1/5)∫_0 ^1 ln(5x+1)d(5x+1)  =         =(1/5)[(5x+1){ln(5x+1)−1}]_0 ^1                 =(1/5)[6(ln6−1)+1]

01ln(5x+1)dx=1501ln(5x+1)d(5x+1)==15[(5x+1){ln(5x+1)1}]01=15[6(ln61)+1]

Commented by ahmedeid last updated on 07/Jun/20

thanks[alot[sir

thanks[alot[sir

Commented by ahmedeid last updated on 07/Jun/20

Commented by ahmedeid last updated on 07/Jun/20

numbdr 14 please

numbdr14please

Commented by bemath last updated on 07/Jun/20

qn 97305

qn97305

Commented by Sourav mridha last updated on 07/Jun/20

welcome

Answered by mathmax by abdo last updated on 08/Jun/20

let S_n =Σ_(k=1) ^n  (1/n)(ln(5k+n)−ln(n)) ⇒  S_n =(1/n) Σ_(k=1) ^n  ln(((5k+n)/n)) =(1/n) Σ_(k=1) ^n  ln(1+5(k/n))→∫_0 ^1 ln(1+5x)dx  lim_(n→+∞)  S_n =∫_0 ^1  ln(1+5x)dx  changement ln(1+5x)=t give  1+5x =e^t  ⇒x =((e^t −1)/5) ⇒∫_0 ^1  ln(1+5x)dx =∫_0 ^(ln6)  t ((1/5))e^t  dt  =(1/5) ∫_0 ^(ln6)  t e^t  dt =(1/5){ [t e^t ]_0 ^(ln6)  −∫_0 ^(ln6)  e^t  dt}  =(1/5){6ln6 −[e^t ]_0 ^(ln6) } =(6/5)ln6 −(1/5)(6−1) =(6/5)ln6 −1

letSn=k=1n1n(ln(5k+n)ln(n))Sn=1nk=1nln(5k+nn)=1nk=1nln(1+5kn)01ln(1+5x)dxlimn+Sn=01ln(1+5x)dxchangementln(1+5x)=tgive1+5x=etx=et1501ln(1+5x)dx=0ln6t(15)etdt=150ln6tetdt=15{[tet]0ln60ln6etdt}=15{6ln6[et]0ln6}=65ln615(61)=65ln61

Commented by bemath last updated on 08/Jun/20

yes. we answer the same

yes.weanswerthesame

Terms of Service

Privacy Policy

Contact: info@tinkutara.com