Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 97307 by eidmarie last updated on 07/Jun/20

Commented by john santu last updated on 07/Jun/20

∫_1 ^∞  (((ln(5x+n)−ln(n))/n)) dx

$$\underset{\mathrm{1}} {\overset{\infty} {\int}}\:\left(\frac{\mathrm{ln}\left(\mathrm{5x}+\mathrm{n}\right)−\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{n}}\right)\:\mathrm{dx} \\ $$

Commented by bemath last updated on 07/Jun/20

[ x ln(5x+1)−x+(1/5)ln(5x+1)]_0 ^1   (ln(6)−1+(1/5)ln(6))−0  (6/5)ln(6)−1

$$\left[\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{ln}}\left(\mathrm{5}\boldsymbol{\mathrm{x}}+\mathrm{1}\right)−\boldsymbol{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{5}}\boldsymbol{\mathrm{ln}}\left(\mathrm{5}\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\left(\boldsymbol{\mathrm{ln}}\left(\mathrm{6}\right)−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}}\boldsymbol{\mathrm{ln}}\left(\mathrm{6}\right)\right)−\mathrm{0} \\ $$$$\frac{\mathrm{6}}{\mathrm{5}}\boldsymbol{\mathrm{ln}}\left(\mathrm{6}\right)−\mathrm{1}\: \\ $$

Answered by Sourav mridha last updated on 07/Jun/20

lim_(n→∞) (1/n)Σ_(k=1) ^n ln[((5k)/n)+1]=∫_0 ^1 ln(5x+1)dx

$$\underset{\boldsymbol{{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\boldsymbol{{n}}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\boldsymbol{{ln}}\left[\frac{\mathrm{5}\boldsymbol{{k}}}{\boldsymbol{{n}}}+\mathrm{1}\right]=\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{{ln}}\left(\mathrm{5}\boldsymbol{{x}}+\mathrm{1}\right)\boldsymbol{{dx}} \\ $$

Commented by ahmedeid last updated on 07/Jun/20

can you[solve[it[by[steps[sir

$${can}\:{you}\left[{solve}\left[{it}\left[{by}\left[{steps}\left[{sir}\right.\right.\right.\right.\right. \\ $$

Commented by bemath last updated on 07/Jun/20

using D.I method

$$\mathrm{using}\:\mathrm{D}.\mathrm{I}\:\mathrm{method} \\ $$

Commented by Sourav mridha last updated on 07/Jun/20

∫_0 ^1 ln(5x+1)dx=(1/5)∫_0 ^1 ln(5x+1)d(5x+1)  =         =(1/5)[(5x+1){ln(5x+1)−1}]_0 ^1                 =(1/5)[6(ln6−1)+1]

$$\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{{ln}}\left(\mathrm{5}\boldsymbol{{x}}+\mathrm{1}\right)\boldsymbol{{dx}}=\frac{\mathrm{1}}{\mathrm{5}}\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{{ln}}\left(\mathrm{5}\boldsymbol{{x}}+\mathrm{1}\right)\boldsymbol{{d}}\left(\mathrm{5}\boldsymbol{{x}}+\mathrm{1}\right) \\ $$$$=\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{5}}\left[\left(\mathrm{5}\boldsymbol{{x}}+\mathrm{1}\right)\left\{\boldsymbol{{ln}}\left(\mathrm{5}\boldsymbol{{x}}+\mathrm{1}\right)−\mathrm{1}\right\}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{5}}\left[\mathrm{6}\left(\boldsymbol{{ln}}\mathrm{6}−\mathrm{1}\right)+\mathrm{1}\right] \\ $$

Commented by ahmedeid last updated on 07/Jun/20

thanks[alot[sir

$${thanks}\left[{alot}\left[{sir}\right.\right. \\ $$

Commented by ahmedeid last updated on 07/Jun/20

Commented by ahmedeid last updated on 07/Jun/20

numbdr 14 please

$${numbdr}\:\mathrm{14}\:{please} \\ $$

Commented by bemath last updated on 07/Jun/20

qn 97305

$$\mathrm{qn}\:\mathrm{97305} \\ $$

Commented by Sourav mridha last updated on 07/Jun/20

welcome

Answered by mathmax by abdo last updated on 08/Jun/20

let S_n =Σ_(k=1) ^n  (1/n)(ln(5k+n)−ln(n)) ⇒  S_n =(1/n) Σ_(k=1) ^n  ln(((5k+n)/n)) =(1/n) Σ_(k=1) ^n  ln(1+5(k/n))→∫_0 ^1 ln(1+5x)dx  lim_(n→+∞)  S_n =∫_0 ^1  ln(1+5x)dx  changement ln(1+5x)=t give  1+5x =e^t  ⇒x =((e^t −1)/5) ⇒∫_0 ^1  ln(1+5x)dx =∫_0 ^(ln6)  t ((1/5))e^t  dt  =(1/5) ∫_0 ^(ln6)  t e^t  dt =(1/5){ [t e^t ]_0 ^(ln6)  −∫_0 ^(ln6)  e^t  dt}  =(1/5){6ln6 −[e^t ]_0 ^(ln6) } =(6/5)ln6 −(1/5)(6−1) =(6/5)ln6 −1

$$\mathrm{let}\:\mathrm{S}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{ln}\left(\mathrm{5k}+\mathrm{n}\right)−\mathrm{ln}\left(\mathrm{n}\right)\right)\:\Rightarrow \\ $$$$\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{ln}\left(\frac{\mathrm{5k}+\mathrm{n}}{\mathrm{n}}\right)\:=\frac{\mathrm{1}}{\mathrm{n}}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{5}\frac{\mathrm{k}}{\mathrm{n}}\right)\rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{5x}\right)\mathrm{dx} \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{S}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{5x}\right)\mathrm{dx}\:\:\mathrm{changement}\:\mathrm{ln}\left(\mathrm{1}+\mathrm{5x}\right)=\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{1}+\mathrm{5x}\:=\mathrm{e}^{\mathrm{t}} \:\Rightarrow\mathrm{x}\:=\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{1}}{\mathrm{5}}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{5x}\right)\mathrm{dx}\:=\int_{\mathrm{0}} ^{\mathrm{ln6}} \:\mathrm{t}\:\left(\frac{\mathrm{1}}{\mathrm{5}}\right)\mathrm{e}^{\mathrm{t}} \:\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\:\int_{\mathrm{0}} ^{\mathrm{ln6}} \:\mathrm{t}\:\mathrm{e}^{\mathrm{t}} \:\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{5}}\left\{\:\left[\mathrm{t}\:\mathrm{e}^{\mathrm{t}} \right]_{\mathrm{0}} ^{\mathrm{ln6}} \:−\int_{\mathrm{0}} ^{\mathrm{ln6}} \:\mathrm{e}^{\mathrm{t}} \:\mathrm{dt}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\left\{\mathrm{6ln6}\:−\left[\mathrm{e}^{\mathrm{t}} \right]_{\mathrm{0}} ^{\mathrm{ln6}} \right\}\:=\frac{\mathrm{6}}{\mathrm{5}}\mathrm{ln6}\:−\frac{\mathrm{1}}{\mathrm{5}}\left(\mathrm{6}−\mathrm{1}\right)\:=\frac{\mathrm{6}}{\mathrm{5}}\mathrm{ln6}\:−\mathrm{1} \\ $$

Commented by bemath last updated on 08/Jun/20

yes. we answer the same

$$\mathrm{yes}.\:\mathrm{we}\:\mathrm{answer}\:\mathrm{the}\:\mathrm{same} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com