Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 97353 by john santu last updated on 07/Jun/20

Answered by abdomathmax last updated on 07/Jun/20

6) let f(x) =arcsin(((x−1)/(x+1))) and g(x)=2arctan(√x)−(π/2)  f^′ (x) =(((((x−1)/(x+1)))^′ )/(√(1−(((x−1)/(x+1)))^2 ))) =(2/((x+1)^2 (√(((x+1)^2 −(x−1)^2 )/((x+1)^2 )))))  =(2/((x+1)(√(x^2 +2x+1−x^2 +2x−1)))) =(2/((x+1)2(√x)))  =(1/((x+1)(√x)))  g^′ (x) =2 ((1/(2(√x)))/(√(1+x))) =(1/((√x)(x+1))) ⇒  f(x)=g(x)+C  C =f(0)−g(0) =−(π/2)−(−(π/2))=0 ⇒  f(x) =g(x)  (with x≥0)

$$\left.\mathrm{6}\right)\:\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arcsin}\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{2arctan}\sqrt{\mathrm{x}}−\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{f}^{'} \left(\mathrm{x}\right)\:=\frac{\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)^{'} }{\sqrt{\mathrm{1}−\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)^{\mathrm{2}} }}\:=\frac{\mathrm{2}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{\frac{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }}} \\ $$$$=\frac{\mathrm{2}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}−\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1}}}\:=\frac{\mathrm{2}}{\left(\mathrm{x}+\mathrm{1}\right)\mathrm{2}\sqrt{\mathrm{x}}} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}}} \\ $$$$\mathrm{g}^{'} \left(\mathrm{x}\right)\:=\mathrm{2}\:\frac{\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}}}{\sqrt{\mathrm{1}+\mathrm{x}}}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{x}}\left(\mathrm{x}+\mathrm{1}\right)}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right)+\mathrm{C} \\ $$$$\mathrm{C}\:=\mathrm{f}\left(\mathrm{0}\right)−\mathrm{g}\left(\mathrm{0}\right)\:=−\frac{\pi}{\mathrm{2}}−\left(−\frac{\pi}{\mathrm{2}}\right)=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{g}\left(\mathrm{x}\right)\:\:\left(\mathrm{with}\:\mathrm{x}\geqslant\mathrm{0}\right) \\ $$

Commented by john santu last updated on 08/Jun/20

thank you

$$\mathrm{thank}\:\mathrm{you}\: \\ $$

Answered by abdomathmax last updated on 07/Jun/20

8)lim_(x→1^+ )    ((3/(lnx))−(2/((x−1))))  =lim_(x→1^+ )   ((3x−3−2lnx)/((x−1)lnx))  =lim_(x→1^+ )     ((3−(2/x))/(lnx +((x−1)/x))) =lim_(x→1^+ )    ((3x−2)/(xlnx +x−1))  =lim_(x→1^+ )      (3/(lnx +1+1)) =(3/2)

$$\left.\mathrm{8}\right)\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\:\:\left(\frac{\mathrm{3}}{\mathrm{lnx}}−\frac{\mathrm{2}}{\left(\mathrm{x}−\mathrm{1}\right)}\right) \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\:\frac{\mathrm{3x}−\mathrm{3}−\mathrm{2lnx}}{\left(\mathrm{x}−\mathrm{1}\right)\mathrm{lnx}} \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\:\:\:\frac{\mathrm{3}−\frac{\mathrm{2}}{\mathrm{x}}}{\mathrm{lnx}\:+\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}}\:=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\:\:\frac{\mathrm{3x}−\mathrm{2}}{\mathrm{xlnx}\:+\mathrm{x}−\mathrm{1}} \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\:\:\:\:\frac{\mathrm{3}}{\mathrm{lnx}\:+\mathrm{1}+\mathrm{1}}\:=\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Answered by abdomathmax last updated on 07/Jun/20

8)^2        lim_(x→1)  ((arctanx−(π/4))/(x−1))  =lim_(x→1)     ((1/(1+x^2 ))/1) =(1/2)

$$\left.\mathrm{8}\right)^{\mathrm{2}} \:\:\:\:\:\:\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}} \:\frac{\mathrm{arctanx}−\frac{\pi}{\mathrm{4}}}{\mathrm{x}−\mathrm{1}} \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}} \:\:\:\:\frac{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by abdomathmax last updated on 07/Jun/20

8)^3          lim_(x→4^+ )   (3(x−4))^(x−4)   =lim_(x→4^+ )   e^((x−4)ln(3(x−4)))   =lim_(x→4^+ )    e^((x−4)ln(3)+(x−4)ln(x−4))   =e^0  =1

$$\left.\mathrm{8}\right)^{\mathrm{3}} \:\:\:\:\:\:\:\:\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{4}^{+} } \:\:\left(\mathrm{3}\left(\mathrm{x}−\mathrm{4}\right)\right)^{\mathrm{x}−\mathrm{4}} \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{4}^{+} } \:\:\mathrm{e}^{\left(\mathrm{x}−\mathrm{4}\right)\mathrm{ln}\left(\mathrm{3}\left(\mathrm{x}−\mathrm{4}\right)\right)} \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{4}^{+} } \:\:\:\mathrm{e}^{\left(\mathrm{x}−\mathrm{4}\right)\mathrm{ln}\left(\mathrm{3}\right)+\left(\mathrm{x}−\mathrm{4}\right)\mathrm{ln}\left(\mathrm{x}−\mathrm{4}\right)} \\ $$$$=\mathrm{e}^{\mathrm{0}} \:=\mathrm{1} \\ $$$$ \\ $$

Answered by abdomathmax last updated on 07/Jun/20

9)arcsinx +arcosy =(π/2) ⇒  arcosy =(π/2) −arcsinx ⇒  y =cos((π/2)−arcsinx) =x  equation of tangent   is y =f^′ (((√2)/2))(x−((√2)/2))+f(((√2)/2))  =1(x−((√2)/2))+((√2)/2) ⇒y =x

$$\left.\mathrm{9}\right)\mathrm{arcsinx}\:+\mathrm{arcosy}\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{arcosy}\:=\frac{\pi}{\mathrm{2}}\:−\mathrm{arcsinx}\:\Rightarrow \\ $$$$\mathrm{y}\:=\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−\mathrm{arcsinx}\right)\:=\mathrm{x}\:\:\mathrm{equation}\:\mathrm{of}\:\mathrm{tangent}\: \\ $$$$\mathrm{is}\:\mathrm{y}\:=\mathrm{f}^{'} \left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\left(\mathrm{x}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)+\mathrm{f}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$$=\mathrm{1}\left(\mathrm{x}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\Rightarrow\mathrm{y}\:=\mathrm{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com