Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 97423 by mathmax by abdo last updated on 08/Jun/20

solve y^(′′)  +4y =xe^(−x)     with  y(0)=1 and y^′ (0) =−1

solvey+4y=xexwithy(0)=1andy(0)=1

Answered by Rio Michael last updated on 08/Jun/20

m^2  + 4 = 0 ⇔ m = ±2i ⇒ y_c  = (Acos 2x +B sin 2x)  let y = Cxe^(−x)  + De^(−x)  ⇒ y′ = −Cxe^(−x)  + Ce^(−x) −De^(−x)   ⇒ y′′ = Cxe^(−x)  −Ce^(−x) −Ce^(−x) + De^(−x)  = Cxe^(−x) −2Ce^(−x)  + De^(−x)   ⇒ Cxe^(−x) −2Ce^(−x)  + De^(−x)  = xe^(−x)    Cx−2C + D = x  ⇒  (C−1)x−2C + D = 0 ⇒ C = 1 and −2C +D = 0 ⇒ D = 2  y_g  = A cos 2x + Bsin 2x + xe^(−x)  + 2e^(−x)   y = 1, x = 0 ⇒  1 = A + 2 ⇒ A = −1  y′ = −2Asin 2x + 2Bcos 2x −xe^(−x)  + e^(−x)  −2e^(−x)   y′ = −1 , x = 0 ⇒ 2B  + 1 −2 = −1 ⇒ B = 0  y = −cos 2x + xe^(−x)  + 2e^(−x)   please check

m2+4=0m=±2iyc=(Acos2x+Bsin2x)lety=Cxex+Dexy=Cxex+CexDexy=CxexCexCex+Dex=Cxex2Cex+DexCxex2Cex+Dex=xexCx2C+D=x(C1)x2C+D=0C=1and2C+D=0D=2yg=Acos2x+Bsin2x+xex+2exy=1,x=01=A+2A=1y=2Asin2x+2Bcos2xxex+ex2exy=1,x=02B+12=1B=0y=cos2x+xex+2expleasecheck

Answered by mathmax by abdo last updated on 08/Jun/20

let solve by laplace transform   (e)⇒L(y^(′′) )+4L(y) =L(xe^(−x) ) ⇒x^2 L(y)−xy(0)−y^′ (0)+4L(y) =L(xe^(−x) )  ⇒(x^2  +4)L(y)−x+1 =L(xe^(−x) ) ⇒(x^2  +4)L(y) =x−1 +L(xe^(−x) )   we have L(xe^(−x) ) =∫_0 ^∞  t e^(−t)  e^(−xt)  dt =∫_0 ^∞  t e^(−(x+1)t)  dt  =_(by parts)    [−(1/(x+1)) e^(−(x+1)t) ]_0 ^∞  +∫_0 ^∞  (1/(x+1)) e^(−(x+1)t)  dt  =(1/(x+1)) +(1/(x+1))[−(1/(x+1)) e^(−(x+1)t) ]_0 ^∞  =(1/(x+1)) +(1/((x+1)^2 )) ⇒  (x^2  +4)L(y) =x−1 +(1/(x+1)) +(1/((x+1)^2 )) ⇒L(y) =((x−1)/(x^2  +4)) +(1/((x+1)(x^2  +4))) +(1/((x+1)^2 (x^2  +4)))  ⇒y(x) =L^(−1) (((x−1)/(x^2  +4)))+L^(−1) ((1/((x+1)(x^2  +4))))+L^(−1) ((1/((x+1)^2 (x^2  +4))))  f(x) =((x−1)/(x^2  +4)) =((x−1)/((x−2i)(x+2i))) =(a/(x−2i)) +(b/(x+2i))  a =((2i−1)/(4i)) =(1/2) +(i/4)  and b =((−2i−1)/(−4i)) =((2i+1)/(4i)) =(1/2) +(1/(4i))=(1/2)−(i/4) ⇒  f(x) =((1/2) +(i/4))×(1/(x−2i)) +((1/2)−(i/4))×(1/(x+2i))  L^(−1) (f(x)) =((1/2)+(i/4))e^(2ix)  +((1/2)−(i/4))e^(−2ix)  (→at form acos(2x)+bsin(2x))  g(x) =(1/((x+1)(x^2 +4))) =(1/((x+1)(x−2i)(x+2i))) =(a/(x+1)) +(b/(x−2i)) +(c/(x+2i))  a =(1/((−1−2i)i)) =(i/((1+2i)))  b =(1/((2i+1)4i)) =((−i)/(4(2i+1)))  and c =(1/((−2i+1)(−4i))) =(1/(4i(2i−1))) =((−i)/(4(2i−1)))  L^(−1) (g(x)) =ae^(−x)  +b e^(2ix)  +c e^(−2ix)  (→ae^(−x)  +αcos(2x)+βsin(2x))  h(x) =(1/((x+1)^2 (x^2 +4))) =(a/(x+1)) +(b/((x+1)^2 )) +(c/(x+2i)) +(d/(x−2i)) ⇒  L^(−1) (h) =ae^(−x)  +bx e^(−x)  +c e^(−2ix)  +d e^(2ix)  (→at form( a +bx)e^(−x) +αcos(2x) +bsin(2x)  .....

letsolvebylaplacetransform(e)L(y)+4L(y)=L(xex)x2L(y)xy(0)y(0)+4L(y)=L(xex)(x2+4)L(y)x+1=L(xex)(x2+4)L(y)=x1+L(xex)wehaveL(xex)=0tetextdt=0te(x+1)tdt=byparts[1x+1e(x+1)t]0+01x+1e(x+1)tdt=1x+1+1x+1[1x+1e(x+1)t]0=1x+1+1(x+1)2(x2+4)L(y)=x1+1x+1+1(x+1)2L(y)=x1x2+4+1(x+1)(x2+4)+1(x+1)2(x2+4)y(x)=L1(x1x2+4)+L1(1(x+1)(x2+4))+L1(1(x+1)2(x2+4))f(x)=x1x2+4=x1(x2i)(x+2i)=ax2i+bx+2ia=2i14i=12+i4andb=2i14i=2i+14i=12+14i=12i4f(x)=(12+i4)×1x2i+(12i4)×1x+2iL1(f(x))=(12+i4)e2ix+(12i4)e2ix(atformacos(2x)+bsin(2x))g(x)=1(x+1)(x2+4)=1(x+1)(x2i)(x+2i)=ax+1+bx2i+cx+2ia=1(12i)i=i(1+2i)b=1(2i+1)4i=i4(2i+1)andc=1(2i+1)(4i)=14i(2i1)=i4(2i1)L1(g(x))=aex+be2ix+ce2ix(aex+αcos(2x)+βsin(2x))h(x)=1(x+1)2(x2+4)=ax+1+b(x+1)2+cx+2i+dx2iL1(h)=aex+bxex+ce2ix+de2ix(atform(a+bx)ex+αcos(2x)+bsin(2x).....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com