Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 97489 by ali_golmakani last updated on 08/Jun/20

please  prove it    ∫_0 ^∞ e^(−ax^2 ) cos bx  dx= (1/2)(√(π/a)).e^(−(b^2 /(4a)))

pleaseproveit0eax2cosbxdx=12πa.eb24a

Answered by smridha last updated on 08/Jun/20

=(1/2)Re∫_(−∞) ^∞ e^(−ax^2 +ibx) dx  =(1/2)Re(√(𝛑/a)).e^(((−ib)^2 )/(4a))  =(1/2)(√(𝛑/a)).e^(−(b^2 /(4a)))   we know ∫_(−∞) ^(+∞) e^(−𝛂x^2 +𝛃x)  dx=(√(𝛑/𝛂)).e^(𝛃^2 /(4𝛂))   this is one of the results used  in quantum mechanics for finding  the probality density of particle.  i also prove the result...which   i directly used here.

=12Reeax2+ibxdx=12Reπa.e(ib)24a=12πa.eb24aweknow+eαx2+βxdx=πα.eβ24αthisisoneoftheresultsusedinquantummechanicsforfindingtheprobalitydensityofparticle.ialsoprovetheresult...whichidirectlyusedhere.

Answered by mathmax by abdo last updated on 08/Jun/20

∫_0 ^∞  e^(−ax^2 ) cos(bx)dx =(1/2)Re(∫_(−∞) ^∞  e^(−ax^2 −ibx)   dx) but  ∫_(−∞) ^(+∞)  e^(−ax^2 −ibx)  dx =∫_(−∞) ^(+∞)  e^(−a( x^2  +2((ib)/(2a))x   +(((ib)/(2a)))^2 −(((ib)/(2a)))^2 ))  dx  =∫_(−∞) ^(+∞)  e^(−a{  (x+((ib)/(2a)))^2 +(b^2 /(4a^2 ))})  dx  = e^(−((b2)/(4a)))  ∫_(−∞) ^(+∞)  e^(−a(x+((ib)/(2a)))^2 ) dx  =_(x+((ib)/(2a))=t)      e^(−(b^2 /(4a)))  ∫_(−∞) ^(+∞)  e^(−at^2 ) dt =_((√a)t =u)    e^(−(b^2 /(4a)))  ∫_(−∞) ^(+∞)  e^(−u^2 ) (du/(√a))  =((√π)/(2(√a))) e^(−(b^2 /(4a)))   =(1/2)(√(π/a))e^(−(b^2 /(4a)))        (a>0)

0eax2cos(bx)dx=12Re(eax2ibxdx)but+eax2ibxdx=+ea(x2+2ib2ax+(ib2a)2(ib2a)2)dx=+ea{(x+ib2a)2+b24a2}dx=eb24a+ea(x+ib2a)2dx=x+ib2a=teb24a+eat2dt=at=ueb24a+eu2dua=π2aeb24a=12πaeb24a(a>0)

Commented by ali_golmakani last updated on 08/Jun/20

thank you dear friend

thankyoudearfriend

Commented by mathmax by abdo last updated on 08/Jun/20

you are welcome friend

youarewelcomefriend

Terms of Service

Privacy Policy

Contact: info@tinkutara.com