All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 9758 by richard last updated on 31/Dec/16
provethat(∑∞n=1(an+bn)p)1/p⩽(∑∞n=1anp)1/p+(∑∞n=1bnp)1/p
Commented by FilupSmith last updated on 04/Jan/17
Attempting∴(∑∞n=1(∑pv=0(pv)anp−vbnp))1/p⩽(∑∞n=1anp)1/p+(∑∞n=1bnp)1/plet:A=(∑∞n=1(anp))B=(∑∞n=1(bnp))(∑∞n=1(∑pv=0(pv)anp−vbnp))1/p⩽1Ap+1Bp(∑∞n=1(∑pv=0(pv)anp−vbnp))1/p⩽Ap+Bp(AB)p(∑∞n=1(∑pv=0(pv)anp−vbnp))1/p⩽(∑∞n=1(anp))p+(∑∞n=1(bnp))p{(∑∞n=1(anp))(∑∞n=1(bnp))}pAttempting
Terms of Service
Privacy Policy
Contact: info@tinkutara.com