All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 97616 by mathmax by abdo last updated on 08/Jun/20
give∫0∞e−x(1+x)2dxatformofserie
Answered by mathmax by abdo last updated on 09/Jun/20
wehave∫0∞e−x(1+x)2dx=byparts[−11+xe−x]0∞+∫0∞(−1x+1)e−xdx=1−∫0∞e−x1+xdx=1−∫0∞11+x(∑n=0∞(−x)nn!)dx=1−∑n=0∞(−1)nn!∫0∞xn1+xdxbut∫0∞xn1+xdx=∫01xn1+xdx+∫1∞xn1+xdx(→x=1t)=∫01xn1+xdx+∫011tn(1+1t)(dtt2)=∫01xn1+xdx+∫01dttn(t2+1)=∫01xn(∑p=0∞(−1)pxp)dx+∫01x−n(∑p=0∞(−1)px2p)=∑p=0∞(−1)p∫01xn+pdx+∑p=0∞(−1)p∫01x2p−ndx=∑p=0∞(−1)pn+p+1+∑p=0∞(−1)p2p−n+1⇒I=1−∑n=0∞(−1)nn!(∑p=0∞(−1)pn+p+1+∑p=0∞(−1)p2p−n+1)=1−∑n,p(−1)n+pn!(n+p+1)−∑n,p(−1)n+pn!(2p−n+1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com