All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 97620 by mathmax by abdo last updated on 08/Jun/20
calculate∫0∞sin(πx2)x4−x2+1dx
Answered by mathmax by abdo last updated on 10/Jun/20
letI=∫0∞sin(πx2)x4−x2+1dx⇒2I=∫−∞+∞sin(πx2)x4−x2+1dx=Im(∫−∞+∞eiπx2x4−x2+1dx)letφ(z)=eiπz2z4−x2+1polesofφ?z4−z2+1=0⇒t2−t+1=0(t=z2)Δ=−3⇒t1=1+i32=eiπ3andt2=1−i32=e−iπ3⇒φ(z)=eiπz2(z2−eiπ3)(z2−e−iπ3)=eiπz2(z−eiπ6)(z+eiπ6)(z−e−iπ6)(z+e−iπ6)residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ6)+Res(φ,−e−iπ6)}Res(φ,eiπ6)=limz→eiπ6(z−eiπ6)φ(z)=eiπeiπ32eiπ6(2isin(π3))=eiπ(12+i32)4i×32e−iπ6=12i3e−iπ6i.e−π34=123e−π34e−iπ6Res(φ,−e−iπ6)=eiπe−iπ3−2e−iπ6(−2isin(π3))=14i×32eiπ6eiπ(12−i32)=12i3.i.eπ34eiπ6=123eπ34eiπ6⇒∫−∞+∞φ(z)dz=2iπ{123e−π34e−iπ6+123eπ34eiπ6}=iπ3{e−π32(32−i2)+eπ34(32+i2)}=iπ3{32e−π34−i2e−π34+32eπ34+i2eπ34}=iπ2e−π34+iπ2eπ34+(...)⇒Im(∫−∞+∞φ(z)dz=π2(eπ34+e−π34)=2I⇒★I=π4(eπ34+e−π34)★
Terms of Service
Privacy Policy
Contact: info@tinkutara.com