Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97624 by mathmax by abdo last updated on 08/Jun/20

calculate ∫_2 ^∞     (dx/((x+1)^3 (x^2  +1)^4 ))

calculate2dx(x+1)3(x2+1)4

Answered by MJS last updated on 09/Jun/20

∫(dx/((x+1)^3 (x^2 +1)^4 ))=       [Ostrogradski]  =−((45x^7 −6x^6 +37x^5 −16x^4 +−101x^3 −26x^2 −109x−32)/(192(x+1)^2 (x^2 +1)^3 ))−∫((15x−49)/(64(x+1)(x^2 +1)))dx    −∫((15x−49)/(64(x+1)(x^2 +1)))dx=(1/2)∫(dx/(x+1))−∫((32x−17)/(64(x^2 +1)))dx=  =(1/2)ln (x+1) −(1/4)ln (x^2 +1) +((17)/(64))arctan x =  =(1/4)ln (((x+1)^2 )/(x^2 +1)) +((17)/(64))arctan x +C    ∫_2 ^(+∞) (dx/((x+1)^3 (x^2 +1)^4 ))=((857)/(36000))+(1/4)ln (5/9) +((17)/(64))arctan (1/2)

dx(x+1)3(x2+1)4=[Ostrogradski]=45x76x6+37x516x4+101x326x2109x32192(x+1)2(x2+1)315x4964(x+1)(x2+1)dx15x4964(x+1)(x2+1)dx=12dxx+132x1764(x2+1)dx==12ln(x+1)14ln(x2+1)+1764arctanx==14ln(x+1)2x2+1+1764arctanx+C+2dx(x+1)3(x2+1)4=85736000+14ln59+1764arctan12

Commented by I want to learn more last updated on 09/Jun/20

I appreciate sir.

Iappreciatesir.

Commented by MJS last updated on 09/Jun/20

I explained Ostrogradski′s method a few  weeks ago, cannot find the post now. there  are explanations on the web

IexplainedOstrogradskismethodafewweeksago,cannotfindthepostnow.thereareexplanationsontheweb

Commented by I want to learn more last updated on 09/Jun/20

Ohh. I wish you could find it sir, have missed

Ohh.Iwishyoucouldfinditsir,havemissed

Commented by MJS last updated on 09/Jun/20

question 94354

question94354

Answered by mathmax by abdo last updated on 09/Jun/20

complex method I =∫_2 ^∞  (dx/((x+1)^3 (x^2 +1)^4 )) ⇒  I = ∫_2 ^∞  (dx/((x+1)^3 (x−i)^4 (x+i)^4 )) =∫_2 ^∞  (dx/((((x+1)/(x−i)))^3  (x−i)^7 (x+i)^4 ))  changement ((x+1)/(x−i)) =t give x+1 =tx−it ⇒(1−t)x =−1−it ⇒x =((−it−1)/(1−t))  =((it+1)/(t−1)) ⇒(dx/dt) =((i(t−1)−it−1)/((t−1)^2 )) =((−i−1)/((t−1)^2 ))  x−i =((it+1)/(t−1)) −i =((it+1−it+i)/(t−1)) =((1+i)/(t−1))  x+i =((it+1)/(t−1)) +i =((it+1+it−i)/(t−1)) =((2it +1−i)/(t−1)) ⇒  I =∫_(3/(2−i)) ^1    (((−1−i))/((t−1)^2 t^3 (((1+i)/(t−1)))^7 (((2it +1−i)/(t−1)))^4 )) dt  =−(1/((1+i)^6 )) ∫_(3/(2−i)) ^1     (((t−1)^(11) )/((t−1)^2  t^3 (2it +1−i)^4 )) dt  =−(1/((1+i)^6 )) ∫_(3/(2i)) ^1   (((t−1)^9 )/(t^3 (2it +1−i)^4 )) dt but   2it +1−i =2i(t+((1−i)/2))  ⇒ I =−(1/((1+i)^6 (2i)^4 )) ∫_(3/(2i)) ^1   (((t−1)^9 )/(t^3 (t+((1−i)/2))^4 ))dt  we have ∫_(−((3i)/2)) ^1    (((t−1)^9 )/(t^3 (t+((1−i)/2))^4 ))dt =∫_(−((3i)/2)) ^1  ((Σ_(k=0) ^9  C_9 ^k  t^k (−1)^(9−k) )/(t^3 (t+((1−i)/2))^4 ))dt  =−Σ_(k=0) ^9  C_9 ^k  (−1)^k  t^(k−3)  (dt/((t+((1−i)/2))^4 ))  let  ϕ_k (t) =(t^(k−3) /((t +((1−i)/2))^4 )) ⇒ϕ_k (t) =(a_1 /(t+((1−i)/2))) +(a_2 /((t+((1−i)/2))^2 )) +(a_3 /((t+((1−i)/2))^3 )) +(a_3 /((t+((1−i)/2))^4 ))  rest to calculate a_i ...be continued...

complexmethodI=2dx(x+1)3(x2+1)4I=2dx(x+1)3(xi)4(x+i)4=2dx(x+1xi)3(xi)7(x+i)4changementx+1xi=tgivex+1=txit(1t)x=1itx=it11t=it+1t1dxdt=i(t1)it1(t1)2=i1(t1)2xi=it+1t1i=it+1it+it1=1+it1x+i=it+1t1+i=it+1+itit1=2it+1it1I=32i1(1i)(t1)2t3(1+it1)7(2it+1it1)4dt=1(1+i)632i1(t1)11(t1)2t3(2it+1i)4dt=1(1+i)632i1(t1)9t3(2it+1i)4dtbut2it+1i=2i(t+1i2)I=1(1+i)6(2i)432i1(t1)9t3(t+1i2)4dtwehave3i21(t1)9t3(t+1i2)4dt=3i21k=09C9ktk(1)9kt3(t+1i2)4dt=k=09C9k(1)ktk3dt(t+1i2)4letφk(t)=tk3(t+1i2)4φk(t)=a1t+1i2+a2(t+1i2)2+a3(t+1i2)3+a3(t+1i2)4resttocalculateai...becontinued...

Commented by I want to learn more last updated on 09/Jun/20

Thanks sir. Waiting sir

Thankssir.Waitingsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com