All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 97627 by mathmax by abdo last updated on 08/Jun/20
give∫0∞arctan(x)(1+x2)2dxatformofserie
Answered by mathmax by abdo last updated on 09/Jun/20
A=∫0∞arctan(x)(1+x2)2dxwehaveddx(arctanx)=11+x2=∑n=0∞(−1)nx2n⇒arctan(x)=∑n=0∞(−1)nx2n+12n+1+c(c=0)⇒A=∑n=0∞(−1)n2n+1∫0∞x2n+1(1+x2)2dx=∑n=0∞(−1)n2n+1wnwn=∫0∞x2n+1(1+x2)2dxchangementx=tanθgivewn=∫0π2tannθ(1+tan2θ)2(1+tan2θ)dθ=∫0π2cos2θtannθdθ⇒A=∑n=0∞(−1)nwn2n+1
anotherwaywehaveI=∫0∞arctan(x)(1+x2)2dx=∫01arctan(x)(1+x2)2dx+∫1∞arctan(x)(1+x2)2dx(→x=1t)=∫01arctan(x)(1+x2)2dx+∫01π2−arctant(1+1t2)2(dtt2)=∫01arctan(x)(1+x2)2dx+∫01(π2−arctant)t2(1+t2)2dt=∫01arctan(x)+π2x2−x2arctanx(1+x2)2dx=∫01(1−x2)arctanx(1+x2)2+π2∫01x2dx(1+x2)2wehavefor∣u∣<111+u=∑n=0∞(−1)nun⇒−1(1+u)2=∑n=1∞n(−1)nun−1⇒1(1+u)2=∑n=1∞n(−1)n−1un−1=∑n=0∞(n+1)(−1)nun⇒1(1+x2)2=∑n=0∞(n+1)(−1)nx2n⇒∫01x2dx(1+x2)2=∑n=0∞(n+1)(−1)n∫01x2n+2dx=∑n=0∞(n+1)(−1)n2n+3∫01(1−x2)arctan(x)(1+x2)2dx=∑n=0∞(n+1)(−1)n∫01(1−x2)x2narctan(x)dx=∑n=0∞(n+1)(−1)nAnwithAn=∫01(x2n−x2n+2)arctanxdxAn=[(12n+1x2n+1−12n+3x2n+3)arctanx]01−∫01(12n+1x2n+1−12n+3x2n+3)dx1+x2=π4(12n+1−12n+3)−12n+1∫01x2n+11+x2dx+12n+3∫01x2n+31+x2dx...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com