Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97627 by mathmax by abdo last updated on 08/Jun/20

give ∫_0 ^∞   ((arctan(x))/((1+x^2 )^2 ))dx at form of serie

give0arctan(x)(1+x2)2dxatformofserie

Answered by mathmax by abdo last updated on 09/Jun/20

A =∫_0 ^∞   ((arctan(x))/((1+x^2 )^2 )) dx  we have (d/dx)(arctanx) =(1/(1+x^2 )) =Σ_(n=0) ^∞  (−1)^n  x^(2n)   ⇒arctan(x) =Σ_(n=0) ^∞  (((−1)^n  x^(2n+1) )/(2n+1)) +c  (c=0) ⇒  A =Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) ∫_0 ^∞  (x^(2n+1) /((1+x^2 )^2 ))dx  =Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) w_n   w_n =∫_0 ^∞  (x^(2n+1) /((1+x^2 )^2 ))dx changement x =tanθ give  w_n = ∫_0 ^(π/2)    ((tan^n θ)/((1+tan^2 θ)^2 ))(1+tan^2 θ)dθ =∫_0 ^(π/2)  cos^2 θ tan^n  θ dθ  ⇒A =Σ_(n=0) ^∞  (((−1)^n  w_n )/(2n+1))

A=0arctan(x)(1+x2)2dxwehaveddx(arctanx)=11+x2=n=0(1)nx2narctan(x)=n=0(1)nx2n+12n+1+c(c=0)A=n=0(1)n2n+10x2n+1(1+x2)2dx=n=0(1)n2n+1wnwn=0x2n+1(1+x2)2dxchangementx=tanθgivewn=0π2tannθ(1+tan2θ)2(1+tan2θ)dθ=0π2cos2θtannθdθA=n=0(1)nwn2n+1

Answered by mathmax by abdo last updated on 09/Jun/20

another way  we have   I =∫_0 ^∞   ((arctan(x))/((1+x^2 )^2 ))dx =∫_0 ^1  ((arctan(x))/((1+x^2 )^2 ))dx +∫_1 ^∞  ((arctan(x))/((1+x^2 )^2 ))dx(→x=(1/t))  =∫_0 ^1  ((arctan(x))/((1+x^2 )^2 ))dx +∫_0 ^1  (((π/2)−arctant)/((1+(1/t^2 ))^2 ))((dt/t^2 ))  =∫_0 ^1  ((arctan(x))/((1+x^2 )^2 ))dx +∫_0 ^1  ((((π/2)−arctant)t^2 )/((1+t^2 )^2 ))dt  =∫_0 ^1  ((arctan(x)+(π/2)x^2  −x^2  arctanx)/((1+x^2 )^2 ))dx =∫_0 ^1  (((1−x^2 )arctanx)/((1+x^2 )^2 )) +(π/2)∫_0 ^1  ((x^2  dx)/((1+x^2 )^2 ))  we have for ∣u∣<1  (1/(1+u)) =Σ_(n=0) ^∞  (−1)^n  u^n  ⇒−(1/((1+u)^2 )) =Σ_(n=1) ^∞  n(−1)^n  u^(n−1)   ⇒(1/((1+u)^2 )) =Σ_(n=1) ^∞  n(−1)^(n−1)  u^(n−1)  =Σ_(n=0) ^∞  (n+1)(−1)^n  u^n  ⇒  (1/((1+x^2 )^2 )) =Σ_(n=0) ^∞ (n+1)(−1)^n  x^(2n)  ⇒  ∫_0 ^1  ((x^2  dx)/((1+x^2 )^2 )) =Σ_(n=0) ^∞  (n+1)(−1)^n  ∫_0 ^1  x^(2n+2)  dx =Σ_(n=0) ^∞  (((n+1)(−1)^n )/(2n+3))  ∫_0 ^1  (((1−x^2 )arctan(x))/((1+x^2 )^2 ))dx =Σ_(n=0) ^∞  (n+1)(−1)^n  ∫_0 ^1 (1−x^2 )x^(2n)  arctan(x)dx  =Σ_(n=0) ^∞  (n+1)(−1)^n  A_n  with A_n =∫_0 ^1  (x^(2n) −x^(2n+2) )arctanx dx  A_n =[((1/(2n+1))x^(2n+1) −(1/(2n+3))x^(2n+3) ) arctanx]_0 ^1 −∫_0 ^1  ((1/(2n+1))x^(2n+1) −(1/(2n+3))x^(2n+3) )(dx/(1+x^2 ))  =(π/4)((1/(2n+1))−(1/(2n+3)))−(1/(2n+1))∫_0 ^1  (x^(2n+1) /(1+x^2 ))dx+(1/(2n+3)) ∫_0 ^1  (x^(2n+3) /(1+x^2 )) dx...be continued...

anotherwaywehaveI=0arctan(x)(1+x2)2dx=01arctan(x)(1+x2)2dx+1arctan(x)(1+x2)2dx(x=1t)=01arctan(x)(1+x2)2dx+01π2arctant(1+1t2)2(dtt2)=01arctan(x)(1+x2)2dx+01(π2arctant)t2(1+t2)2dt=01arctan(x)+π2x2x2arctanx(1+x2)2dx=01(1x2)arctanx(1+x2)2+π201x2dx(1+x2)2wehaveforu∣<111+u=n=0(1)nun1(1+u)2=n=1n(1)nun11(1+u)2=n=1n(1)n1un1=n=0(n+1)(1)nun1(1+x2)2=n=0(n+1)(1)nx2n01x2dx(1+x2)2=n=0(n+1)(1)n01x2n+2dx=n=0(n+1)(1)n2n+301(1x2)arctan(x)(1+x2)2dx=n=0(n+1)(1)n01(1x2)x2narctan(x)dx=n=0(n+1)(1)nAnwithAn=01(x2nx2n+2)arctanxdxAn=[(12n+1x2n+112n+3x2n+3)arctanx]0101(12n+1x2n+112n+3x2n+3)dx1+x2=π4(12n+112n+3)12n+101x2n+11+x2dx+12n+301x2n+31+x2dx...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com