Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97683 by Don08q last updated on 09/Jun/20

 Evaluate ∫_0 ^1 (1/(√(16 + 9x^2 ))) dx

Evaluate01116+9x2dx

Commented by bemath last updated on 09/Jun/20

set 3x = 4tan z ⇒3dx=4sec^2 zdz  I=∫ (((4/3)sec^2 z dz)/(√(16+16tan^2 z)))  I= (1/3)∫ sec z dz = (1/3) ln∣sec z+tan z∣   I= (1/3)[ln∣((√(16+9x^2 ))/4)+((3x)/4)∣]_0 ^1   =(1/3)ln(2)

set3x=4tanz3dx=4sec2zdzI=43sec2zdz16+16tan2zI=13seczdz=13lnsecz+tanzI=13[ln16+9x24+3x4]01=13ln(2)

Commented by Tony Lin last updated on 09/Jun/20

(1/3)∫_0 ^1 (1/( (√(((4/3))^2 +x^2 ))))dx  =(1/3)sinh^(−1) (((3x)/4))∣_0 ^1    =(1/3)sinh^(−1) ((3/4))

13011(43)2+x2dx=13sinh1(3x4)01=13sinh1(34)

Commented by john santu last updated on 09/Jun/20

joosss coolll

joossscoolll

Answered by smridha last updated on 10/Jun/20

(1/3)∫_0 ^1 (dx/( (√(((4/3))^2 +x^2 ))))=(1/3) (ln[x+(√(((4/3))^2 +x^2 ))])_0 ^1   =(1/3)ln2

1301dx(43)2+x2=13(ln[x+(43)2+x2])01=13ln2

Answered by Rio Michael last updated on 09/Jun/20

 RecaLl  ∫(1/(√(x^2  +a^2 ))) dx = ln(x + (√(x^2  + a^2 ))) + c  ∫_0 ^1 (1/(√(16+ 9x^2 ))) dx = (1/3)∫_0 ^1  (1/( (√(x^2  + ((4/3))^2 ))))dx = (1/3) [ln(x + (√(x^2  +((4/3))^2 )))]_0 ^1       = (1/3)[ln((8/5))−ln((4/3))] = (1/3) ln 2

RecaLl1x2+a2dx=ln(x+x2+a2)+c10116+9x2dx=13101x2+(43)2dx=13[ln(x+x2+(43)2)]01=13[ln(85)ln(43)]=13ln2

Commented by peter frank last updated on 09/Jun/20

good

good

Answered by mathmax by abdo last updated on 09/Jun/20

I =∫_0 ^1  (dx/(√(16+9x^2 ))) ⇒I =(1/4)∫_0 ^1   (dx/(√(1+(9/(16))x^2 )))  changement (3/4)x=t give  I =(1/4)× ∫_0 ^(3/4) (1/(√(1+t^2 )))×(4/3) dt  =(1/3)[ln(t+(√(1+t^2 ))]_0 ^(3/4)  =(1/3){ln((3/4)+(√(1+(9/(16)))))  =(1/3)ln((3/4) +(5/4)) =(1/3)ln(2)

I=01dx16+9x2I=1401dx1+916x2changement34x=tgiveI=14×03411+t2×43dt=13[ln(t+1+t2]034=13{ln(34+1+916)=13ln(34+54)=13ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com