Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97707 by Power last updated on 09/Jun/20

Answered by smridha last updated on 09/Jun/20

=(1/2)∫_(−∞) ^(+∞) (e^(ix) /(x^2 +1^2 ))dx +(1/2)∫_(+∞) ^(−∞) (e^(−(−ix)) /((−x)^2 +1^2 ))d(−x)  =∫_(−∞) ^(+∞) (e^(ix) /(x^2 +1^2 ))dx=∮_C (e^(iz) /(z^2 +1^2 ))dz  =∮_C (e^(iz) /((z+i)(z−i)))dz  now time for calculate the residues  residue at z_1 =i        lim_(z→i) (((z−i)e^(iz) )/((z−i)(z+i)))=(e^(−1) /(2i))  but z_2 =−i this pole does not enclosed  by the cantour(C)  now:  I=∮_C f(z)dz=2𝛑iΣenclosed resudue by the cantour  =2𝛑i.(e^(−1) /(2i))=𝛑e^(−1)

=12+eixx2+12dx+12+e(ix)(x)2+12d(x)=+eixx2+12dx=Ceizz2+12dz=Ceiz(z+i)(zi)dznowtimeforcalculatetheresiduesresidueatz1=ilimzi(zi)eiz(zi)(z+i)=e12ibutz2=ithispoledoesnotenclosedbythecantour(C)now:I=Cf(z)dz=2πiΣenclosedresuduebythecantour=2πi.e12i=πe1

Answered by smridha last updated on 09/Jun/20

Method (2)  let F(t)=2∫_0 ^(+∞) ((cos(tx))/(x^2 +1))dx[given integrand is even]  now by Laplace Transformation  f(s)=L[f(t)].....(i)  so f(s)=∫_0 ^∞ e^(−st) [2∫_0 ^∞ ((cos(tx))/(x^2 +1))dx]dt            =2∫_0 ^∞ (1/(x^2 +1))[∫_0 ^∞ e^(−st) cos(tx)dt]dx           =2∫_0 ^∞ (s/((x^2 +1)(s^2 +x^2 )))dx          =((2s)/((s^2 −1)))[∫_0 ^∞ ((1/((x^2 +1)))−(1/((s^2 +x^2 ))))dx]  =((2s)/((s^2 −1)))[tan^(−1) (x)−(1/s)tan^(−1) ((x/s))]_0 ^∞   =(𝛑/((s−(−1))))  now from (i) F(t)=L^(−1) [f(s)]                                  =𝛑.L^(−1) [(1/((s−(−1))))]                                   =𝛑e^(−1)   now I=F(1)=(𝛑/e)

Method(2)letF(t)=20+cos(tx)x2+1dx[givenintegrandiseven]nowbyLaplaceTransformationf(s)=L[f(t)].....(i)sof(s)=0est[20cos(tx)x2+1dx]dt=201x2+1[0estcos(tx)dt]dx=20s(x2+1)(s2+x2)dx=2s(s21)[0(1(x2+1)1(s2+x2))dx]=2s(s21)[tan1(x)1stan1(xs)]0=π(s(1))nowfrom(i)F(t)=L1[f(s)]=π.L1[1(s(1))]=πe1nowI=F(1)=πe

Commented by Power last updated on 09/Jun/20

thanks sir

thankssir

Commented by smridha last updated on 09/Jun/20

also thankful because this is   very significant integral.

alsothankfulbecausethisisverysignificantintegral.

Answered by abdomathmax last updated on 09/Jun/20

A =∫_(−∞) ^(+∞)  ((cosx)/(x^2 +1))dx ⇒ A = Re(∫_(−∞) ^(+∞)  (e^(ix) /(x^(2 ) +1))dx)  let ϕ(z) = (e^(iz) /(z^2  +1)) ⇒ϕ(z) =(e^(iz) /((z−i)(z+i)))  residus tbeorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) =2iπ×(e^(−1) /(2i))  =πe^(−1)  ⇒ A =(π/e)

A=+cosxx2+1dxA=Re(+eixx2+1dx)letφ(z)=eizz2+1φ(z)=eiz(zi)(z+i)residustbeoremgive+φ(z)dz=2iπRes(φ,i)=2iπ×e12i=πe1A=πe

Terms of Service

Privacy Policy

Contact: info@tinkutara.com