Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97721 by Power last updated on 09/Jun/20

Commented by mr W last updated on 09/Jun/20

Commented by smridha last updated on 09/Jun/20

this is not the solution!!!

$${this}\:{is}\:{not}\:\boldsymbol{{the}}\:\boldsymbol{{solution}}!!! \\ $$

Commented by mr W last updated on 09/Jun/20

wow,  red bold text with three  exclamation marks!

$${wow},\:\:{red}\:{bold}\:{text}\:{with}\:{three} \\ $$$${exclamation}\:{marks}! \\ $$

Answered by smridha last updated on 09/Jun/20

let sin(x)=u so  ∫(1−u^2 )^(((m−1))/2) u^n du  =∫Σ_(r=0) ^(((m−1))/2) C_r ^(((m−1))/2) (1)^(r−(((m−1))/2)) .(−1)^r u^(2r) u^n du  =Σ_(r=0) ^(((m−1))/2) (−1)^r .C_r ^(((m−1))/2) (((sin(x))^(2r+n+1) )/((2r+n+1))) +g

$$\boldsymbol{{let}}\:\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{u}}\:\boldsymbol{{so}} \\ $$$$\int\left(\mathrm{1}−\boldsymbol{{u}}^{\mathrm{2}} \right)^{\frac{\left(\boldsymbol{{m}}−\mathrm{1}\right)}{\mathrm{2}}} \boldsymbol{{u}}^{\boldsymbol{{n}}} \boldsymbol{{du}} \\ $$$$=\int\underset{\boldsymbol{{r}}=\mathrm{0}} {\overset{\frac{\left({m}−\mathrm{1}\right)}{\mathrm{2}}} {\sum}}\overset{\frac{\left(\boldsymbol{{m}}−\mathrm{1}\right)}{\mathrm{2}}} {{C}}_{\boldsymbol{{r}}} \left(\mathrm{1}\right)^{\boldsymbol{{r}}−\frac{\left(\boldsymbol{{m}}−\mathrm{1}\right)}{\mathrm{2}}} .\left(−\mathrm{1}\right)^{\boldsymbol{{r}}} \boldsymbol{{u}}^{\mathrm{2}\boldsymbol{{r}}} \boldsymbol{{u}}^{\boldsymbol{{n}}} \boldsymbol{{du}} \\ $$$$=\underset{\boldsymbol{{r}}=\mathrm{0}} {\overset{\frac{\left(\boldsymbol{{m}}−\mathrm{1}\right)}{\mathrm{2}}} {\sum}}\left(−\mathrm{1}\right)^{\boldsymbol{{r}}} .\overset{\frac{\left(\boldsymbol{{m}}−\mathrm{1}\right)}{\mathrm{2}}} {\boldsymbol{{C}}}_{\boldsymbol{{r}}} \frac{\left(\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}\boldsymbol{{r}}+\boldsymbol{{n}}+\mathrm{1}} }{\left(\mathrm{2}\boldsymbol{{r}}+\boldsymbol{{n}}+\mathrm{1}\right)}\:+\boldsymbol{{g}} \\ $$

Commented by Power last updated on 09/Jun/20

Brilliant !   I would be glad if you give me an idea

$$\mathrm{Brilliant}\:!\:\:\:\mathrm{I}\:\mathrm{would}\:\mathrm{be}\:\mathrm{glad}\:\mathrm{if}\:\mathrm{you}\:\mathrm{give}\:\mathrm{me}\:\mathrm{an}\:\mathrm{idea} \\ $$

Commented by smridha last updated on 09/Jun/20

about what?

$$\boldsymbol{{about}}\:\boldsymbol{{what}}? \\ $$

Commented by Power last updated on 09/Jun/20

solution

$$\mathrm{solution} \\ $$

Commented by smridha last updated on 09/Jun/20

at first I Binomially expand  (1−u^2 )^(((m−1))/2)  then i interchanged  summation and integration  because the integrand function  is uniformly convergent....  and you also check this by putting  the value of m and n as your wish

$${at}\:\boldsymbol{{first}}\:\boldsymbol{{I}}\:\boldsymbol{{B}}{i}\boldsymbol{{nomially}}\:\boldsymbol{{expand}} \\ $$$$\left(\mathrm{1}−\boldsymbol{{u}}^{\mathrm{2}} \right)^{\frac{\left(\boldsymbol{{m}}−\mathrm{1}\right)}{\mathrm{2}}} \:\boldsymbol{{then}}\:\boldsymbol{{i}}\:\boldsymbol{{interchanged}} \\ $$$$\boldsymbol{{summation}}\:\boldsymbol{{and}}\:\boldsymbol{{integration}} \\ $$$$\boldsymbol{{because}}\:\boldsymbol{{the}}\:\boldsymbol{{integrand}}\:\boldsymbol{{function}} \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{uniformly}}\:\boldsymbol{{convergent}}.... \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{you}}\:\boldsymbol{{also}}\:\boldsymbol{{check}}\:\boldsymbol{{this}}\:\boldsymbol{{by}}\:\boldsymbol{{putting}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{m}}\:\boldsymbol{{and}}\:\boldsymbol{{n}}\:\boldsymbol{{as}}\:\boldsymbol{{your}}\:\boldsymbol{{wish}} \\ $$

Commented by Power last updated on 09/Jun/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com