Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 97751 by bobhans last updated on 09/Jun/20

(y^2 −xy)dx + 2xy dy = 0

$$\left(\mathrm{y}^{\mathrm{2}} −\mathrm{xy}\right)\mathrm{dx}\:+\:\mathrm{2xy}\:\mathrm{dy}\:=\:\mathrm{0}\: \\ $$

Commented by bemath last updated on 09/Jun/20

⇔ 2xy dy = (xy−y^2 ) dx   set y = zx ⇔ (dy/dx) = z + x (dz/dx)  ⇔ z + x (dy/dx) = ((x^2 z−x^2 z^2 )/(2x^2 z))  z+ x (dy/dx) = ((z−z^2 )/(2z))   x (dy/dx) = ((z−3z^2 )/(2z)) ⇒((2z dz)/(z−3z^2 )) = (dx/x)  ((2 dz)/(3z−1)) = −(dx/x) ⇒ (2/3)ln(3z−1)= −ln x +c  (2/3)ln(((3y)/x)−1) = ln((C/x))  ln(((3y)/x)−1) = ln (√(((C/x))^3 ))  ((3y)/x) = 1+ (√(((C/x))^3 ))  y = (1/3)(x+x (√(((C/x))^3 )))

$$\Leftrightarrow\:\mathrm{2xy}\:\mathrm{dy}\:=\:\left(\mathrm{xy}−\mathrm{y}^{\mathrm{2}} \right)\:\mathrm{dx}\: \\ $$$$\mathrm{set}\:\mathrm{y}\:=\:\mathrm{zx}\:\Leftrightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{z}\:+\:\mathrm{x}\:\frac{\mathrm{dz}}{\mathrm{dx}} \\ $$$$\Leftrightarrow\:{z}\:+\:{x}\:\frac{{dy}}{{dx}}\:=\:\frac{{x}^{\mathrm{2}} {z}−{x}^{\mathrm{2}} {z}^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{2}} {z}} \\ $$$${z}+\:{x}\:\frac{{dy}}{{dx}}\:=\:\frac{{z}−{z}^{\mathrm{2}} }{\mathrm{2}{z}}\: \\ $$$${x}\:\frac{{dy}}{{dx}}\:=\:\frac{{z}−\mathrm{3}{z}^{\mathrm{2}} }{\mathrm{2}{z}}\:\Rightarrow\frac{\mathrm{2}{z}\:{dz}}{{z}−\mathrm{3}{z}^{\mathrm{2}} }\:=\:\frac{{dx}}{{x}} \\ $$$$\frac{\mathrm{2}\:{dz}}{\mathrm{3}{z}−\mathrm{1}}\:=\:−\frac{{dx}}{{x}}\:\Rightarrow\:\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\left(\mathrm{3}{z}−\mathrm{1}\right)=\:−\mathrm{ln}\:{x}\:+{c} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\left(\frac{\mathrm{3y}}{{x}}−\mathrm{1}\right)\:=\:\mathrm{ln}\left(\frac{\mathrm{C}}{{x}}\right) \\ $$$$\mathrm{ln}\left(\frac{\mathrm{3y}}{{x}}−\mathrm{1}\right)\:=\:\mathrm{ln}\:\sqrt{\left(\frac{\mathrm{C}}{{x}}\right)^{\mathrm{3}} } \\ $$$$\frac{\mathrm{3}{y}}{{x}}\:=\:\mathrm{1}+\:\sqrt{\left(\frac{{C}}{{x}}\right)^{\mathrm{3}} } \\ $$$${y}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left({x}+{x}\:\sqrt{\left(\frac{{C}}{{x}}\right)^{\mathrm{3}} }\right)\: \\ $$

Commented by bobhans last updated on 09/Jun/20

waw.......

$$\mathrm{waw}....... \\ $$

Commented by john santu last updated on 10/Jun/20

yes..correct

$$\mathrm{yes}..\mathrm{correct}\: \\ $$

Answered by smridha last updated on 09/Jun/20

(∂/∂y)(y^2 −xy)=2y−x≠(∂/∂x)(2xy)=2y  this is not exact differential  so, (1/(2xy))[2y−x−2y]=−(1/(2y))  I.F=e^(∫−(dy/(2y))) =(1/(√y))   multi:by this of both  sides of given eq^n   (y^(3/2) −xy^(1/2) )dx+2xy^(1/2) dy=0  now ∫_((keeping y as constant)) (y^(3/2) −xy^(1/2) )dx  =xy^(3/2) −(x^2 /2)y^(1/2)   and ∫_((terms are donot containing x)) (0)dy=0  so solution:      xy^(3/2) −(x^2 /2)y^(1/2) =c

$$\frac{\partial}{\partial{y}}\left(\boldsymbol{{y}}^{\mathrm{2}} −\boldsymbol{{xy}}\right)=\mathrm{2}\boldsymbol{{y}}−\boldsymbol{{x}}\neq\frac{\partial}{\partial\boldsymbol{{x}}}\left(\mathrm{2}\boldsymbol{{xy}}\right)=\mathrm{2}\boldsymbol{{y}} \\ $$$$\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{not}}\:\boldsymbol{{exact}}\:\boldsymbol{{differential}} \\ $$$$\boldsymbol{{so}},\:\frac{\mathrm{1}}{\mathrm{2}{xy}}\left[\mathrm{2}{y}−\boldsymbol{{x}}−\mathrm{2}\boldsymbol{{y}}\right]=−\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{y}}} \\ $$$$\boldsymbol{{I}}.{F}={e}^{\int−\frac{{dy}}{\mathrm{2}\boldsymbol{{y}}}} =\frac{\mathrm{1}}{\sqrt{\boldsymbol{{y}}}}\:\:\:\boldsymbol{{multi}}:\boldsymbol{{by}}\:\boldsymbol{{this}}\:\boldsymbol{{of}}\:\boldsymbol{{both}} \\ $$$$\boldsymbol{{sides}}\:\boldsymbol{{of}}\:\boldsymbol{{given}}\:\boldsymbol{{eq}}^{\boldsymbol{{n}}} \\ $$$$\left(\boldsymbol{{y}}^{\frac{\mathrm{3}}{\mathrm{2}}} −\boldsymbol{{xy}}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\boldsymbol{{dx}}+\mathrm{2}\boldsymbol{{xy}}^{\frac{\mathrm{1}}{\mathrm{2}}} \boldsymbol{{dy}}=\mathrm{0} \\ $$$$\boldsymbol{{now}}\:\int_{\left({keeping}\:\boldsymbol{{y}}\:\boldsymbol{{as}}\:\boldsymbol{{constant}}\right)} \left(\boldsymbol{{y}}^{\frac{\mathrm{3}}{\mathrm{2}}} −\boldsymbol{{xy}}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\boldsymbol{{dx}} \\ $$$$=\boldsymbol{{xy}}^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\mathrm{2}}\boldsymbol{{y}}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\boldsymbol{{and}}\:\int_{\left(\boldsymbol{{terms}}\:\boldsymbol{{are}}\:\boldsymbol{{donot}}\:\boldsymbol{{containing}}\:\boldsymbol{{x}}\right)} \left(\mathrm{0}\right)\boldsymbol{{dy}}=\mathrm{0} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{solution}}: \\ $$$$\:\:\:\:{x}\boldsymbol{{y}}^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\mathrm{2}}\boldsymbol{{y}}^{\frac{\mathrm{1}}{\mathrm{2}}} =\boldsymbol{{c}} \\ $$

Commented by mr W last updated on 09/Jun/20

please check sir:  with xy^(3/2) −(x^2 /2)y^(1/2) =c we get:  y^(3/2) +(3/2)xy^(1/2) (dy/dx)−xy^(1/2) −(x^2 /4)y^(−(1/2)) (dy/dx)=0  4y(y−x)+x(6y−x)(dy/dx)=0  ⇒4y(y−x)dx+x(6y−x)dy=0  this is not the original d. eqn.

$${please}\:{check}\:{sir}: \\ $$$${with}\:{xy}^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{y}^{\frac{\mathrm{1}}{\mathrm{2}}} ={c}\:{we}\:{get}: \\ $$$${y}^{\frac{\mathrm{3}}{\mathrm{2}}} +\frac{\mathrm{3}}{\mathrm{2}}{xy}^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dy}}{{dx}}−{xy}^{\frac{\mathrm{1}}{\mathrm{2}}} −\frac{{x}^{\mathrm{2}} }{\mathrm{4}}{y}^{−\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\mathrm{4}{y}\left({y}−{x}\right)+{x}\left(\mathrm{6}{y}−{x}\right)\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}{y}\left({y}−{x}\right){dx}+{x}\left(\mathrm{6}{y}−{x}\right){dy}=\mathrm{0} \\ $$$${this}\:{is}\:{not}\:{the}\:{original}\:{d}.\:{eqn}. \\ $$

Commented by smridha last updated on 09/Jun/20

I donot find any mistake..  if you can then show me....

$$\boldsymbol{{I}}\:{do}\boldsymbol{{not}}\:\boldsymbol{{find}}\:\boldsymbol{{any}}\:\boldsymbol{{mistake}}.. \\ $$$$\boldsymbol{{if}}\:\boldsymbol{{you}}\:\boldsymbol{{can}}\:\boldsymbol{{then}}\:\boldsymbol{{show}}\:\boldsymbol{{me}}.... \\ $$

Commented by prakash jain last updated on 10/Jun/20

(y^2 −xy)dx+2xydy=0  Mdx+Ndy=0  M_y =2y−x,N_x =2y  ((M_y −N_x )/N)=((−x)/(2xy))=−(1/(2y))  I think the mistake is in  calculating I.F.  It is function of y. It should be  function of x to use as integrating  factor.  (y^(3/2) −xy^(1/2) )dx+2xy^(1/2) dy=0  So the above equation is still not exact.

$$\left({y}^{\mathrm{2}} −{xy}\right){dx}+\mathrm{2}{xydy}=\mathrm{0} \\ $$$${Mdx}+{Ndy}=\mathrm{0} \\ $$$${M}_{{y}} =\mathrm{2}{y}−{x},{N}_{{x}} =\mathrm{2}{y} \\ $$$$\frac{{M}_{{y}} −{N}_{{x}} }{{N}}=\frac{−{x}}{\mathrm{2}{xy}}=−\frac{\mathrm{1}}{\mathrm{2}{y}} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{mistake}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{calculating}\:\mathrm{I}.\mathrm{F}. \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{function}\:\mathrm{of}\:\boldsymbol{{y}}.\:\mathrm{It}\:\mathrm{should}\:\mathrm{be} \\ $$$$\mathrm{function}\:\mathrm{of}\:\boldsymbol{{x}}\:\mathrm{to}\:\mathrm{use}\:\mathrm{as}\:\mathrm{integrating} \\ $$$$\mathrm{factor}. \\ $$$$\left(\boldsymbol{{y}}^{\frac{\mathrm{3}}{\mathrm{2}}} −\boldsymbol{{xy}}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\boldsymbol{{dx}}+\mathrm{2}\boldsymbol{{xy}}^{\frac{\mathrm{1}}{\mathrm{2}}} \boldsymbol{{dy}}=\mathrm{0} \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{above}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{still}\:\mathrm{not}\:\mathrm{exact}. \\ $$

Commented by smridha last updated on 10/Jun/20

yeah my second solution tells  the truth ....but i am not yet  understand why the IF is different  for this two mehods.....two  method sshould be analogus  to each other....

$${ye}\boldsymbol{{ah}}\:\boldsymbol{{my}}\:\boldsymbol{{second}}\:\boldsymbol{{solution}}\:\boldsymbol{{tells}} \\ $$$$\boldsymbol{{th}}{e}\:\boldsymbol{{truth}}\:....\boldsymbol{{but}}\:\boldsymbol{{i}}\:\boldsymbol{{am}}\:\boldsymbol{{not}}\:\boldsymbol{{yet}} \\ $$$$\boldsymbol{{understand}}\:\boldsymbol{{why}}\:\boldsymbol{{the}}\:\boldsymbol{{I}}{F}\:\boldsymbol{{is}}\:\boldsymbol{{different}} \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{this}}\:\boldsymbol{{two}}\:\boldsymbol{{mehods}}.....\boldsymbol{{two}} \\ $$$$\boldsymbol{{method}}\:{s}\boldsymbol{{should}}\:\boldsymbol{{be}}\:\boldsymbol{{analogus}} \\ $$$$\boldsymbol{{t}}{o}\:\boldsymbol{{each}}\:\boldsymbol{{other}}.... \\ $$$$ \\ $$

Commented by prakash jain last updated on 10/Jun/20

((M_y −N_x )/N) should not have y and  should be a fuction of only x.  So there is a mistake in method   used for computing I.F in the answer  above

$$\frac{{M}_{{y}} −{N}_{{x}} }{{N}}\:\mathrm{should}\:\mathrm{not}\:\mathrm{have}\:{y}\:\mathrm{and} \\ $$$$\mathrm{should}\:\mathrm{be}\:\mathrm{a}\:\mathrm{fuction}\:\mathrm{of}\:\mathrm{only}\:{x}. \\ $$$$\mathrm{So}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{method}\: \\ $$$$\mathrm{used}\:\mathrm{for}\:\mathrm{computing}\:\mathrm{I}.\mathrm{F}\:\mathrm{in}\:\mathrm{the}\:\mathrm{answer} \\ $$$$\mathrm{above} \\ $$

Answered by smridha last updated on 10/Jun/20

(y^2 −xy)dx+2xydy=0  (dy/dx)+(y/(2x))=(1/2) so IF=e^(∫(dx/(2x))) =(√x)  mult:  and integrating by both sides with this we get  ∫d(y(√x))=(1/2)∫(√x)dx  so the solution is  y(√x)=(1/3)x^(3/2) +c  now this is perfect....but still I  have confution why my previous  method didnot work...probably  I did silly mistake anywhere....

$$\left(\boldsymbol{{y}}^{\mathrm{2}} −\boldsymbol{{xy}}\right)\boldsymbol{{dx}}+\mathrm{2}\boldsymbol{{xydy}}=\mathrm{0} \\ $$$$\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}+\frac{\boldsymbol{{y}}}{\mathrm{2}\boldsymbol{{x}}}=\frac{\mathrm{1}}{\mathrm{2}}\:\boldsymbol{{so}}\:\boldsymbol{{IF}}=\boldsymbol{{e}}^{\int\frac{\boldsymbol{{dx}}}{\mathrm{2}\boldsymbol{{x}}}} =\sqrt{\boldsymbol{{x}}} \\ $$$$\boldsymbol{{mult}}:\:\:\boldsymbol{{and}}\:\boldsymbol{{integrating}}\:\boldsymbol{{by}}\:\boldsymbol{{both}}\:\boldsymbol{{sides}}\:\boldsymbol{{with}}\:\boldsymbol{{this}}\:\boldsymbol{{we}}\:\boldsymbol{{get}} \\ $$$$\int\boldsymbol{{d}}\left(\boldsymbol{{y}}\sqrt{\boldsymbol{{x}}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{{x}}{dx} \\ $$$${so}\:{the}\:\boldsymbol{{solution}}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{y}}\sqrt{\boldsymbol{{x}}}=\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{{x}}^{\frac{\mathrm{3}}{\mathrm{2}}} +\boldsymbol{{c}} \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{perfect}}....\boldsymbol{{but}}\:\boldsymbol{{still}}\:\boldsymbol{{I}} \\ $$$$\boldsymbol{{have}}\:\boldsymbol{{confution}}\:\boldsymbol{{why}}\:\boldsymbol{{my}}\:\boldsymbol{{previous}} \\ $$$$\boldsymbol{{method}}\:\boldsymbol{{didnot}}\:\boldsymbol{{work}}...\boldsymbol{{probably}} \\ $$$$\boldsymbol{{I}}\:\boldsymbol{{did}}\:\boldsymbol{{silly}}\:\boldsymbol{{mistake}}\:\boldsymbol{{anywhere}}.... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com