Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 97752 by Power last updated on 09/Jun/20

Commented by mr W last updated on 09/Jun/20

i got x=1  ⇒Answer B)

$${i}\:{got}\:{x}=\mathrm{1} \\ $$$$\left.\Rightarrow{Answer}\:{B}\right) \\ $$

Commented by Power last updated on 09/Jun/20

sir please solution

$$\mathrm{sir}\:\mathrm{please}\:\mathrm{solution} \\ $$

Commented by Algoritm last updated on 09/Jun/20

prove that sir

$${prove}\:{that}\:{sir}\: \\ $$

Commented by Farruxjano last updated on 09/Jun/20

I got either. My ans is x=1 too.

$$\mathrm{I}\:\mathrm{got}\:\mathrm{either}.\:\mathrm{My}\:\mathrm{ans}\:\mathrm{is}\:\mathrm{x}=\mathrm{1}\:\mathrm{too}. \\ $$

Answered by Farruxjano last updated on 09/Jun/20

Theory Ferma: p−prime and (a;p)=1  a^(p−1) ≡1(modp)   We′ll use it.  1)10^(10^(10) )  ⇒ 10^6 ≡1(modp)  10^(10) ≡r(mod6)⇒  ⇒ 2^9 ∙5^(10) ≡(r/2)(mod3) ⇒ (r/2)=2 ⇒ r=4  ⇒ 10^(6k+4) ≡10^4 (mod7)≡4(mod7) r=4  2)20^(20^(20) ) =(7∙3−1)^(20^(20) ) ≡1(mod7) ⇒ r=1  3)30^(30^(30) ) =(4∙7+2)^(30^(30) ) ≡2^(30^(30) ) (mod7) ⇒  2^6 =64=9∙7+1≡1(mod7) ⇒ 30^(30) ⋮6 ⇒  ⇒ r=1  4) 40^(40^(40) ) =(6∙7−2)^(40^(40) ) ≡2^(40^(40) ) (mod7) ⇒  40^(40) ≡k(mod6) ⇒ 2^(119) ∙5^(40) ≡(k/2)(mod3) ⇒  (k/2)=2 ⇒ k=4 ⇒ 2^(6k+4) ≡2^4 (mod7)≡  ≡2(mod7) ⇒ r=2  So, in general: 4+1+1+2=8≡1(mod7)  Ans: R=1

$$\mathrm{Theory}\:\mathrm{Ferma}:\:\mathrm{p}−\mathrm{prime}\:\mathrm{and}\:\left(\mathrm{a};\mathrm{p}\right)=\mathrm{1} \\ $$$$\mathrm{a}^{\mathrm{p}−\mathrm{1}} \equiv\mathrm{1}\left(\mathrm{modp}\right)\:\:\:\mathrm{We}'\mathrm{ll}\:\mathrm{use}\:\mathrm{it}. \\ $$$$\left.\mathrm{1}\right)\mathrm{10}^{\mathrm{10}^{\mathrm{10}} } \:\Rightarrow\:\mathrm{10}^{\mathrm{6}} \equiv\mathrm{1}\left(\mathrm{modp}\right)\:\:\mathrm{10}^{\mathrm{10}} \equiv\mathrm{r}\left(\mathrm{mod6}\right)\Rightarrow \\ $$$$\Rightarrow\:\mathrm{2}^{\mathrm{9}} \centerdot\mathrm{5}^{\mathrm{10}} \equiv\frac{\mathrm{r}}{\mathrm{2}}\left(\mathrm{mod3}\right)\:\Rightarrow\:\frac{\mathrm{r}}{\mathrm{2}}=\mathrm{2}\:\Rightarrow\:\mathrm{r}=\mathrm{4} \\ $$$$\Rightarrow\:\mathrm{10}^{\mathrm{6k}+\mathrm{4}} \equiv\mathrm{10}^{\mathrm{4}} \left(\mathrm{mod7}\right)\equiv\mathrm{4}\left(\mathrm{mod7}\right)\:\mathrm{r}=\mathrm{4} \\ $$$$\left.\mathrm{2}\right)\mathrm{20}^{\mathrm{20}^{\mathrm{20}} } =\left(\mathrm{7}\centerdot\mathrm{3}−\mathrm{1}\right)^{\mathrm{20}^{\mathrm{20}} } \equiv\mathrm{1}\left(\mathrm{mod7}\right)\:\Rightarrow\:\mathrm{r}=\mathrm{1} \\ $$$$\left.\mathrm{3}\right)\mathrm{30}^{\mathrm{30}^{\mathrm{30}} } =\left(\mathrm{4}\centerdot\mathrm{7}+\mathrm{2}\right)^{\mathrm{30}^{\mathrm{30}} } \equiv\mathrm{2}^{\mathrm{30}^{\mathrm{30}} } \left(\mathrm{mod7}\right)\:\Rightarrow \\ $$$$\mathrm{2}^{\mathrm{6}} =\mathrm{64}=\mathrm{9}\centerdot\mathrm{7}+\mathrm{1}\equiv\mathrm{1}\left(\mathrm{mod7}\right)\:\Rightarrow\:\mathrm{30}^{\mathrm{30}} \vdots\mathrm{6}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{r}=\mathrm{1} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{40}^{\mathrm{40}^{\mathrm{40}} } =\left(\mathrm{6}\centerdot\mathrm{7}−\mathrm{2}\right)^{\mathrm{40}^{\mathrm{40}} } \equiv\mathrm{2}^{\mathrm{40}^{\mathrm{40}} } \left(\mathrm{mod7}\right)\:\Rightarrow \\ $$$$\mathrm{40}^{\mathrm{40}} \equiv\mathrm{k}\left(\mathrm{mod6}\right)\:\Rightarrow\:\mathrm{2}^{\mathrm{119}} \centerdot\mathrm{5}^{\mathrm{40}} \equiv\frac{\mathrm{k}}{\mathrm{2}}\left(\mathrm{mod3}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{k}}{\mathrm{2}}=\mathrm{2}\:\Rightarrow\:\mathrm{k}=\mathrm{4}\:\Rightarrow\:\mathrm{2}^{\mathrm{6k}+\mathrm{4}} \equiv\mathrm{2}^{\mathrm{4}} \left(\mathrm{mod7}\right)\equiv \\ $$$$\equiv\mathrm{2}\left(\mathrm{mod7}\right)\:\Rightarrow\:\mathrm{r}=\mathrm{2} \\ $$$$\mathrm{So},\:\mathrm{in}\:\mathrm{general}:\:\mathrm{4}+\mathrm{1}+\mathrm{1}+\mathrm{2}=\mathrm{8}\equiv\mathrm{1}\left(\mathrm{mod7}\right) \\ $$$$\mathrm{Ans}:\:\boldsymbol{{R}}=\mathrm{1} \\ $$

Commented by Algoritm last updated on 09/Jun/20

super!

$$\mathrm{super}! \\ $$

Commented by mr W last updated on 09/Jun/20

nice solution sir!

$${nice}\:{solution}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com