Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 97818 by I want to learn more last updated on 09/Jun/20

if     y^2   =  ax^2  + bx +  c  Show that:      y (d^3 y/dx^3 )  +  3 (dy/dx) (d^2 y/dx^2 )   =   0

ify2=ax2+bx+cShowthat:yd3ydx3+3dydxd2ydx2=0

Answered by Rio Michael last updated on 09/Jun/20

 y^2  = ax^2  + bx + c  ⇒ 2y(dy/dx) = 2ax + b  ⇒ 2y(d^2 y/dx^2 ) + 2((dy/dx))^2  = 2a    2y (d^3 y/dx^3 ) + 2(dy/dx).(d^2 y/dx^2 ) + 4(d^2 y/dx^2 ) (dy/dx) = 0  ⇒  2y(d^3 y/dx^3 ) + 6 (dy/dx) (d^2 y/dx^2 ) = 0   ⇒  y(d^3 y/dx^3 ) + 3(dy/dx) (d^2 y/dx^2 ) = 0 proved!

y2=ax2+bx+c2ydydx=2ax+b2yd2ydx2+2(dydx)2=2a2yd3ydx3+2dydx.d2ydx2+4d2ydx2dydx=02yd3ydx3+6dydxd2ydx2=0yd3ydx3+3dydxd2ydx2=0proved!

Commented by I want to learn more last updated on 09/Jun/20

Thanks sir

Thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com