Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 97823 by john santu last updated on 10/Jun/20

If x and y are integers , prove  that x^3 −7x divisible by 3

$$\mathrm{If}\:{x}\:\mathrm{and}\:{y}\:\mathrm{are}\:\mathrm{integers}\:,\:\mathrm{prove} \\ $$$$\mathrm{that}\:{x}^{\mathrm{3}} −\mathrm{7}{x}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\: \\ $$

Commented by bobhans last updated on 10/Jun/20

let x is an integer. we can write  x^3 −7x = x(x^2 −7)   if x is divisible by 3 , then we′re done.  otherwise ,x must have remainder 1 or 2  in the divisibility by 3. thus x^2  must  has remainder 1  (3k+1)^2  = 3[ k(3k+2)] +1 , k∈Z

$$\mathrm{let}\:{x}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}.\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}\:=\:{x}\left({x}^{\mathrm{2}} −\mathrm{7}\right)\: \\ $$$$\mathrm{if}\:{x}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:,\:\mathrm{then}\:\mathrm{we}'\mathrm{re}\:\mathrm{done}. \\ $$$$\mathrm{otherwise}\:,{x}\:\mathrm{must}\:\mathrm{have}\:\mathrm{remainder}\:\mathrm{1}\:\mathrm{or}\:\mathrm{2} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{divisibility}\:\mathrm{by}\:\mathrm{3}.\:\mathrm{thus}\:{x}^{\mathrm{2}} \:\mathrm{must} \\ $$$$\mathrm{has}\:\mathrm{remainder}\:\mathrm{1} \\ $$$$\left(\mathrm{3}{k}+\mathrm{1}\right)^{\mathrm{2}} \:=\:\mathrm{3}\left[\:{k}\left(\mathrm{3}{k}+\mathrm{2}\right)\right]\:+\mathrm{1}\:,\:\mathrm{k}\in\mathbb{Z} \\ $$

Commented by john santu last updated on 10/Jun/20

great all answer

$$\mathrm{great}\:\mathrm{all}\:\mathrm{answer}\: \\ $$

Answered by Rio Michael last updated on 10/Jun/20

let f(x) = x^3 −7x ⇒ f(x + 1) = (x + 1)^3 −7(x + 1) −[x^3 −7x]  f(x + 1)−f(x) = x^3  + 3x^(2 )  + 3x + 1−7x−7 −x^3  + 7x                                  =  3x^2  + 3x −6                                  = 3(x^2  + x −2)   , (x^2  + x −2) ∈ Z  by mathematical induction.

$$\mathrm{let}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} −\mathrm{7}{x}\:\Rightarrow\:{f}\left({x}\:+\:\mathrm{1}\right)\:=\:\left({x}\:+\:\mathrm{1}\right)^{\mathrm{3}} −\mathrm{7}\left({x}\:+\:\mathrm{1}\right)\:−\left[{x}^{\mathrm{3}} −\mathrm{7}{x}\right] \\ $$$${f}\left({x}\:+\:\mathrm{1}\right)−{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x}^{\mathrm{2}\:} \:+\:\mathrm{3}{x}\:+\:\mathrm{1}−\mathrm{7}{x}−\mathrm{7}\:−{x}^{\mathrm{3}} \:+\:\mathrm{7}{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}\:−\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{3}\left({x}^{\mathrm{2}} \:+\:{x}\:−\mathrm{2}\right)\:\:\:,\:\left({x}^{\mathrm{2}} \:+\:{x}\:−\mathrm{2}\right)\:\in\:\mathbb{Z} \\ $$$$\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}. \\ $$

Answered by MJS last updated on 10/Jun/20

(1) x=3n  x^3 −7x=3n(9n^2 −7)  (2) x=3n+1  x^3 −7x=3(3n+1)(3n^2 +2n−2)  (3) x=3n+2  x^3 −7x=3(3n+2)(3n^2 +4n−1)

$$\left(\mathrm{1}\right)\:{x}=\mathrm{3}{n} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}=\mathrm{3}{n}\left(\mathrm{9}{n}^{\mathrm{2}} −\mathrm{7}\right) \\ $$$$\left(\mathrm{2}\right)\:{x}=\mathrm{3}{n}+\mathrm{1} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}=\mathrm{3}\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n}−\mathrm{2}\right) \\ $$$$\left(\mathrm{3}\right)\:{x}=\mathrm{3}{n}+\mathrm{2} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}=\mathrm{3}\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}^{\mathrm{2}} +\mathrm{4}{n}−\mathrm{1}\right) \\ $$

Answered by floor(10²Eta[1]) last updated on 10/Jun/20

x^3 −7x≡x^3 −x(mod 3)  x^3 −x=x(x^2 −1)=x(x−1)(x+1)  but x−1, x and x+1 are 3 consecutive numbers  so at least one of them have to be a multiple of 3  ⇒x^3 −7x≡0(mod 3)

$${x}^{\mathrm{3}} −\mathrm{7}{x}\equiv{x}^{\mathrm{3}} −{x}\left({mod}\:\mathrm{3}\right) \\ $$$${x}^{\mathrm{3}} −{x}={x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)={x}\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right) \\ $$$${but}\:{x}−\mathrm{1},\:{x}\:{and}\:{x}+\mathrm{1}\:{are}\:\mathrm{3}\:{consecutive}\:{numbers} \\ $$$${so}\:{at}\:{least}\:{one}\:{of}\:{them}\:{have}\:{to}\:{be}\:{a}\:{multiple}\:{of}\:\mathrm{3} \\ $$$$\Rightarrow{x}^{\mathrm{3}} −\mathrm{7}{x}\equiv\mathrm{0}\left({mod}\:\mathrm{3}\right) \\ $$

Answered by 1549442205 last updated on 10/Jun/20

x^3 −7x=[(x−1)x(x+1)−6x]⋮3 since  (x−1)x(x+1)⋮3(among three consecutive  always have at least one number divide by 3) and 6x⋮3

$$\mathrm{x}^{\mathrm{3}} −\mathrm{7x}=\left[\left(\mathrm{x}−\mathrm{1}\right)\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)−\mathrm{6x}\right]\vdots\mathrm{3}\:\mathrm{since} \\ $$$$\left(\mathrm{x}−\mathrm{1}\right)\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\vdots\mathrm{3}\left(\mathrm{among}\:\mathrm{three}\:\mathrm{consecutive}\right. \\ $$$$\left.\mathrm{always}\:\mathrm{have}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{number}\:\mathrm{divide}\:\mathrm{by}\:\mathrm{3}\right)\:\mathrm{and}\:\mathrm{6x}\vdots\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com