Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 97847 by bemath last updated on 10/Jun/20

(x^2 +x) (d^2 y/dx^2 ) + (1−2x^2 ) (dy/dx) + (x^2 −x−1)y = x^2 −x−1

(x2+x)d2ydx2+(12x2)dydx+(x2x1)y=x2x1

Answered by niroj last updated on 10/Jun/20

   (x^2 +x)(d^2 y/dx^2 ) + (1−2x^2 ) (dy/dx) +(x^2 −x−1)y= x^2 −x−1     (d^2 y/dx^2 ) + (((1−2x^2 ))/(x^2 +x)) (dy/dx) + ((x^2 −x−1)/(x^2 +x)) y = ((x^2 −x−1)/(x^2 +x))     We know variable coefficient for CF    If : 1+P+Q=0  then part of CF ,u=e^x     let P=  ((1−2x^2 )/(x^2 +x)) , Q= ((x^2 −x−1)/(x^2 +x)) and R= ((x^2 −x−1)/(x^2 +x))    1+((1−2x^2 )/(x^2 +x))+((x^2 −x−1)/(x^2 +x))= ((x^2 +x+1−2x^2 +x^2 −x−1)/(x^2 +x))= (0/(x^2 +x))=0.   ∵1+P+Q=0 is satisfy    complete function     y= uv    y= e^x v.......(i)   we know special case :    (d^2 v/dx^2 )+(p+(2/u).(du/dx))(dv/dx)= (R/u)     (d^2 v/dx^2 )+(((1−2x^2 )/(x^2 +x)) + (2/e^x ) .e^x )(dv/dx)= ((x^2 −x−1)/(e^x (x^2 +x)))     (d^2 v/dx^2 ) +(((2x^2 +2x+1−2x^2 )/(x^2 +x)))(dv/dx) = ((x^2 −x−1)/(e^x (x^2 +x)))    (d^2 v/dx^2 ) + ((2x+1)/(x^2 +x)) (dv/dx) = ((x^2 −x−1)/(e^x (x^2 +x)))    Now we reduces linear form,      Put , (dv/dx)= t ⇒ (d^2 v/dx^2 )= (dt/dx)    (dt/dx) + ((2x+1)/(x^2 +x )). t = ((x^2 −x−1)/(e^x (x^2 +x)))     IF= e^(∫Pdx) = e^(∫((2x+1)/(x^2 +x))dx) =e^(log (x^2 +x))      IF= x^2 +x       t.IF= ∫IF.Qdx+C_1     t.(x^2 +x)= ∫(x^2 +x).((x^2 −x−1)/(e^x (x^2 +x)))dx+C_1    t(x^2 +x)= ∫  ((x^2 −x−1)/e^x )dx+C_1    t(x^2 +x)= ∫ x^2 e^(−x) dx−∫xe^(−x) dx−∫e^(−x) dx+C_1    t(x^2 +x)= [x^2 .(−e^(−x) )−∫2x.(−e^(−x) )dx]−∫xe^(−x) dx−(−e^(−x) )+C_1    t(x^2 +x)= −x^2 e^(−x) +2∫xe^(−x) dx−∫xe^(−x) dx+e^(−x) +C_1    t(x^2 +x)= −x^2 e^(−x) +∫xe^(−x) dx+e^(−x) +C_1    t(x^2 +x)= −x^2 e^(−x) +x(−e^x )−∫1.(−e^(−x) )dx+e^(−x) +C_1     t(x^2 +x)= −x^2 e^(−x) −xe^(−x) −e^(−x) +e^(−x) +C_1     t(x^2 +x)= −x^2 e^(−x) −xe^(−x) +C_1     t= ((−xe^(−x) (x+1))/(x(x+1)))+C_1 (1/(x(x+1)))   (dv/dx) = −e^(−x) +C_1 (1/(x(x+1)))    ∫dv = −∫e^(−x) dx+C_1 ∫ (1/(x(x+1)))dx+C_2    v= −(−e^(−x) )+C_1 [ ∫(1/x)dx−∫(1/(x+1))dx]+C_2    v= e^(−x) +C_1 { log x−log(x+1)}+C_2    v= e^(−x) +C_1 log (x/(x+1))+C_2    Now, again put value of v in eq^n (i)    y=e^x v.....(i)    y= e^x (e^(−x) +C_1 log (x/(x+1))+C_2 )    y = 1+ C_1 e^x  log (x/(x+1)) +C_(2 ) e^x   //.

(x2+x)d2ydx2+(12x2)dydx+(x2x1)y=x2x1d2ydx2+(12x2)x2+xdydx+x2x1x2+xy=x2x1x2+xWeknowvariablecoefficientforCFIf:1+P+Q=0thenpartofCF,u=exletP=12x2x2+x,Q=x2x1x2+xandR=x2x1x2+x1+12x2x2+x+x2x1x2+x=x2+x+12x2+x2x1x2+x=0x2+x=0.1+P+Q=0issatisfycompletefunctiony=uvy=exv.......(i)weknowspecialcase:d2vdx2+(p+2u.dudx)dvdx=Rud2vdx2+(12x2x2+x+2ex.ex)dvdx=x2x1ex(x2+x)d2vdx2+(2x2+2x+12x2x2+x)dvdx=x2x1ex(x2+x)d2vdx2+2x+1x2+xdvdx=x2x1ex(x2+x)Nowwereduceslinearform,Put,dvdx=td2vdx2=dtdxdtdx+2x+1x2+x.t=x2x1ex(x2+x)IF=ePdx=e2x+1x2+xdx=elog(x2+x)IF=x2+xt.IF=IF.Qdx+C1t.(x2+x)=(x2+x).x2x1ex(x2+x)dx+C1t(x2+x)=x2x1exdx+C1t(x2+x)=x2exdxxexdxexdx+C1t(x2+x)=[x2.(ex)2x.(ex)dx]xexdx(ex)+C1t(x2+x)=x2ex+2xexdxxexdx+ex+C1t(x2+x)=x2ex+xexdx+ex+C1t(x2+x)=x2ex+x(ex)1.(ex)dx+ex+C1t(x2+x)=x2exxexex+ex+C1t(x2+x)=x2exxex+C1t=xex(x+1)x(x+1)+C11x(x+1)dvdx=ex+C11x(x+1)dv=exdx+C11x(x+1)dx+C2v=(ex)+C1[1xdx1x+1dx]+C2v=ex+C1{logxlog(x+1)}+C2v=ex+C1logxx+1+C2Now,againputvalueofvineqn(i)y=exv.....(i)y=ex(ex+C1logxx+1+C2)y=1+C1exlogxx+1+C2ex//.

Commented by niroj last updated on 11/Jun/20

thanks dear������

Commented by bemath last updated on 11/Jun/20

waw===beautifull solution

waw===beautifullsolution

Commented by bemath last updated on 11/Jun/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com