Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 97866 by me2love2math last updated on 10/Jun/20

Commented by me2love2math last updated on 10/Jun/20

1 2 5 and 6

125and6

Commented by bobhans last updated on 10/Jun/20

(2i)2xy (dy/dx) + y^2  = e^(2x)   2xy dy + (y^2 −e^(2x) ) dx = 0  exact if (∂N/∂x) = (∂M/∂y)   { (((∂N/∂x) = 2y)),(((∂M/∂y) = 2y)) :} so it is diff equation exact  F(x,y) = ∫ M(x,y) dx + g(y)  where g′(y)=2xy−(∂/∂y) (∫ (y^2 −e^(2x)  )dx)  g′(y) = 2xy −2yx = 0 ⇒g(y) = k  F(x,y) = ∫ (y^2 −e^(2x) ) dx + k  F(x,y) = xy^2 −(1/2)e^(2x) + k   solution is xy^2 −(1/2)e^(2x) +k = C  or xy^2 −(1/2)e^(2x)  = C_1

(2i)2xydydx+y2=e2x2xydy+(y2e2x)dx=0exactifNx=My{Nx=2yMy=2ysoitisdiffequationexactF(x,y)=M(x,y)dx+g(y)whereg(y)=2xyy((y2e2x)dx)g(y)=2xy2yx=0g(y)=kF(x,y)=(y2e2x)dx+kF(x,y)=xy212e2x+ksolutionisxy212e2x+k=Corxy212e2x=C1

Commented by bemath last updated on 10/Jun/20

(1ii) m^2 +7m+49=0  m = −7,−7  y_h  = Ae^(−7x)  + Bx e^(−7x)   particular solution  y_p  = Ce^(5x)  ⇔ { ((y′= 5Ce^(5x) )),((y′′=25Ce^(5x) )) :}  ⇔25Ce^(5x)  + 7(5Ce^(5x) )+49(Ce^(5x) )=4e^(5x)   ⇔(25+35+49)C = 4  C = (4/(109))  ∴ generall solution  y_g  = Ae^(−7x) +Bx e^(−7x) + (4/(109)) e^(5x)

(1ii)m2+7m+49=0m=7,7yh=Ae7x+Bxe7xparticularsolutionyp=Ce5x{y=5Ce5xy=25Ce5x25Ce5x+7(5Ce5x)+49(Ce5x)=4e5x(25+35+49)C=4C=4109generallsolutionyg=Ae7x+Bxe7x+4109e5x

Commented by me2love2math last updated on 10/Jun/20

Thanks all. well appreciated....remain 5

Thanksall.wellappreciated....remain5

Answered by john santu last updated on 10/Jun/20

(1) homogenous solution  λ^2 −5λ+6 = 0  λ = 2,3 ⇒y_h  = C_1 e^(2x)  + C_2 e^(3x)   particular solution  y_p  = a sin 4x + b cos 4x  y′=4a cos 4x− 4b sin 4x  y′′=−16a sin 4x −16b cos 4x  ⇔ { ((22a+20b=2)),((−20a−10b=0)) :}  we get b = −2a ∧a=−(1/9)  generall solution  y_g  = C_1 e^(2x)  + C_2 e^(3x) −(1/9)sin 4x +(2/9)cos 4x

(1)homogenoussolutionλ25λ+6=0λ=2,3yh=C1e2x+C2e3xparticularsolutionyp=asin4x+bcos4xy=4acos4x4bsin4xy=16asin4x16bcos4x{22a+20b=220a10b=0wegetb=2aa=19generallsolutionyg=C1e2x+C2e3x19sin4x+29cos4x

Answered by smridha last updated on 10/Jun/20

(6)s^2 x(s)−sx(0)−x^′ (0)−4x(s)=((2s)/(s^2 +4))     x(s)[s^2 −4]−3s−4=((2s)/(s^2 +4))  x(s)=((2s)/((s^2 −4)(s^2 +4))) +(4/(s^2 −2^2 ))+((3s)/(s^2 −2^2 ))  x(s)=(s/4)[(1/((s^2 −2^2 )))−(1/((s^2 +2^2 )))]+2[(2/(s^2 −2^2 ))]                              +3[(s/(s^2 −2^2 ))]  now take L^(−1)  both sides we get  x(t)=(1/4)cosh(2t)−(1/4)cos2t+2sinh(2t)                3cosh(2t)  so the solution:  x(t)=((13)/4)cosh(2t)−(1/4)cos(2t)+2sinh(2t)

(6)s2x(s)sx(0)x(0)4x(s)=2ss2+4x(s)[s24]3s4=2ss2+4x(s)=2s(s24)(s2+4)+4s222+3ss222x(s)=s4[1(s222)1(s2+22)]+2[2s222]+3[ss222]nowtakeL1bothsideswegetx(t)=14cosh(2t)14cos2t+2sinh(2t)3cosh(2t)sothesolution:x(t)=134cosh(2t)14cos(2t)+2sinh(2t)

Commented by smridha last updated on 10/Jun/20

or ans should be like that  x(t)=((13)/8)[e^(2t) +e^(−2t) ]+[e^(2t) −e^(−2t) ]−(1/4)cos(2t)  =((21)/8)e^(2t) +(5/8)e^(−2t) −(1/4)cos(2t)

oransshouldbelikethatx(t)=138[e2t+e2t]+[e2te2t]14cos(2t)=218e2t+58e2t14cos(2t)

Answered by mathmax by abdo last updated on 10/Jun/20

y^(′′)  −5y^′  +6 =2sin(4x)  (he)→y^(′′) −5y^′  +6 =0→r^2 −5r +6 =0  Δ =25−24 =1 ⇒r_1 =((5+1)/2) =3 and r_2 =((5−1)/2) =2 ⇒y_h =αe^(3x)  +βe^(2x)   =α u_1  +β u_2   W(u_1  ,u_2 ) = determinant (((u_1           u_2 )),((u_1 ^′           u_2 ^′ )))= determinant (((e^(3x)           e^(2x) )),((3e^(3x)        2e^(2x)  )))=−e^(5x)   W_1 = determinant (((0                               e^(2x) )),((2sin(4x)           2e^(2x) )))=−2e^(2x)  sin(4x)  W_2 = determinant (((e^(3x)           0)),((3e^(3x)       2sin(4x))))=2e^(3x)  sin(4x)  v_1 =∫ (w_1 /w)dx =∫   ((−2e^(2x)  sin(4x))/(−e^(5x) )) =2∫ e^(−3x)  sin(4x)dx  =2Im( ∫ e^(−3x+4ix) dx) we have ∫ e^((−3+4i)x)  dx =(1/(−3+4i)) e^((−3+4i)x)   =−(1/(3−4i))e^(−3x) (cos(4x)+isin(4x)) =−((3+4i)/(25))e^(−3x) (cos(4x)+isin(4x))  =−(1/(25))e^(−3x) (3cos(4x)+3isin(4x)+4icos(4x)−4sin(4x)) ⇒  v_1 =−(2/(25))e^(−3x) (3sin(4x)+4cos(4x))  v_2 =∫ (w_2 /w)dx =∫  ((2e^(3x)  sin(4x))/(−e^(5x) ))dx =−2 ∫  e^(−2x)  sin(4x)dx  =−2 Im( ∫ e^((−2+4i)x) dx) and ∫ e^((−2+4i)x) dx=(1/(−2+4i)) e^((−2+4i)x)    =−(1/(2−4i))e^(−2x) (cos(4x)+isin(4x)) =−((2+4i)/(20)) e^(−2x)  {cos(4x)+isin(4x)}  =−(e^(−2x) /(20)){ 2cos(4x)+2isin(4x)+4icos(4x)−4sin(4x)} ⇒  v_2 =(e^(−2x) /(10))( 2sin(4x)+4cos(4x)} =(e^(−2x) /5)(sin(4x)+2cos(4x)) so   y_p =u_1 v_(1 ) +u_2 v_2 =−(2/(25)){3sin(4x)+4cos(4x)} +(1/5)(sin(4x)+2cos(4x))  =(−(6/(25)) +(1/5))sin(4x) +(−(8/(25)) +(2/5))cos(4x)  =−(1/(25))sin(4x) +(2/(25)) cos(4x)  the general solution is  y =y_h  +y_p

y5y+6=2sin(4x)(he)y5y+6=0r25r+6=0Δ=2524=1r1=5+12=3andr2=512=2yh=αe3x+βe2x=αu1+βu2W(u1,u2)=|u1u2u1u2|=|e3xe2x3e3x2e2x|=e5xW1=|0e2x2sin(4x)2e2x|=2e2xsin(4x)W2=|e3x03e3x2sin(4x)|=2e3xsin(4x)v1=w1wdx=2e2xsin(4x)e5x=2e3xsin(4x)dx=2Im(e3x+4ixdx)wehavee(3+4i)xdx=13+4ie(3+4i)x=134ie3x(cos(4x)+isin(4x))=3+4i25e3x(cos(4x)+isin(4x))=125e3x(3cos(4x)+3isin(4x)+4icos(4x)4sin(4x))v1=225e3x(3sin(4x)+4cos(4x))v2=w2wdx=2e3xsin(4x)e5xdx=2e2xsin(4x)dx=2Im(e(2+4i)xdx)ande(2+4i)xdx=12+4ie(2+4i)x=124ie2x(cos(4x)+isin(4x))=2+4i20e2x{cos(4x)+isin(4x)}=e2x20{2cos(4x)+2isin(4x)+4icos(4x)4sin(4x)}v2=e2x10(2sin(4x)+4cos(4x)}=e2x5(sin(4x)+2cos(4x))soyp=u1v1+u2v2=225{3sin(4x)+4cos(4x)}+15(sin(4x)+2cos(4x))=(625+15)sin(4x)+(825+25)cos(4x)=125sin(4x)+225cos(4x)thegeneralsolutionisy=yh+yp

Answered by mathmax by abdo last updated on 10/Jun/20

4) let solve by laplace transform  y^(′′)  +3y^′  +2y =sin(2x) ⇒L(y^(′′) )+3L(y^′ )+2L(y) =L(sin(2x)) ⇒  x^2  L(y)−xy(0)−y^′ (o) +3(xL(y)−y(0))+2L(y) =L(sin(2x)) ⇒  (x^2 +3x+2)L(y) −(x+3)y(o)−y^′ (0) =L(sin(2x))  L(sin(2x) =∫_0 ^∞  sin(2t)e^(−xt)  dt =Im(∫_0 ^∞  e^(2it−xt)  dt)  ∫_0 ^∞  e^((−x+2i)t)  dt =[(1/(−x+2i)) e^((−x+2i)t) ]_(t=0) ^∞  =((−1)/(−x+2i)) =(1/(x−2i)) =((x+2i)/(x^2  +4)) ⇒  L(sin(2x))=(2/(x^2  +4))  (e)⇒(x^2  +3x+2)L(y) =y(o)(x+3)+y^′ (0)+(2/(x^2  +4)) ⇒  L(y) =((x+3)/(x^2  +3x+2))y(0) +((y^′ (0))/(x^2  +3x+2)) +(2/((x^2  +3x+2)(x^2  +4))) ⇒  y(x) =y(0)L^(−1) (((x+3)/(x^2  +3x+2)))+y^′ (0)L^(−1) ((1/(x^2  +3x+2)))+2L^(−1) ((1/((x^2  +3x+2)(x^2 +4))))  f(x) =((x+3)/(x^2 +3x+2))=((x+3)/((x+1)(x+2))) =(x+3)((1/(x+1))−(1/(x+2)))  =((x+3)/(x+1))−((x+3)/(x+2)) =1+(2/(x+1))−(1+(1/(x+2))) =(2/(x+1))−(1/(x+2)) ⇒  L^(−1) (f) =2e^(−x) −e^(−2x)   g(x) =(1/(x^2 +3x+2)) =(1/(x+1))−(1/(x+2)) ⇒L^(−1) (g) =e^(−x) −e^(−2x)   h(x) =(1/((x^2  +3x+2)(x^2  +4))) =(1/((x+1)(x+2)(x−2i)(x+2i)))  =(a/(x+1)) +(b/(x+2)) +(c/(x−2i)) +(d/(x+2i))  a =(1/((−1−2i)(−1+2i))) =(1/((1+2i)(1−2i))) =(1/5)  b =((−1)/((−2−2i)(−2+2i))) =(1/((2+2i)(2−2i))) =(1/(4×2))=(1/8)  c =(1/((2i+1)(2i+2)4i)) =(1/(4i(−4+4i+2i+2))) =(1/(4i(−2+6i))) =(1/(−8i−24)) =((−1)/(8i+24))  d =(1/((−2i+1)(−2i+2)(−4i))) =....  L^(−1) (h) =a e^(−x)  +b^(−2x)  +c e^(2ix)  +d e^(−2ix)  →at form a e^(−x)   +be^(−2x)  +αcos(2x)  +βsin(2x)  so the general solution is  y(x) =ae^(−x)  +b e^(−2x)  +αcos(2x) +βsin(2x)

4)letsolvebylaplacetransformy+3y+2y=sin(2x)L(y)+3L(y)+2L(y)=L(sin(2x))x2L(y)xy(0)y(o)+3(xL(y)y(0))+2L(y)=L(sin(2x))(x2+3x+2)L(y)(x+3)y(o)y(0)=L(sin(2x))L(sin(2x)=0sin(2t)extdt=Im(0e2itxtdt)0e(x+2i)tdt=[1x+2ie(x+2i)t]t=0=1x+2i=1x2i=x+2ix2+4L(sin(2x))=2x2+4(e)(x2+3x+2)L(y)=y(o)(x+3)+y(0)+2x2+4L(y)=x+3x2+3x+2y(0)+y(0)x2+3x+2+2(x2+3x+2)(x2+4)y(x)=y(0)L1(x+3x2+3x+2)+y(0)L1(1x2+3x+2)+2L1(1(x2+3x+2)(x2+4))f(x)=x+3x2+3x+2=x+3(x+1)(x+2)=(x+3)(1x+11x+2)=x+3x+1x+3x+2=1+2x+1(1+1x+2)=2x+11x+2L1(f)=2exe2xg(x)=1x2+3x+2=1x+11x+2L1(g)=exe2xh(x)=1(x2+3x+2)(x2+4)=1(x+1)(x+2)(x2i)(x+2i)=ax+1+bx+2+cx2i+dx+2ia=1(12i)(1+2i)=1(1+2i)(12i)=15b=1(22i)(2+2i)=1(2+2i)(22i)=14×2=18c=1(2i+1)(2i+2)4i=14i(4+4i+2i+2)=14i(2+6i)=18i24=18i+24d=1(2i+1)(2i+2)(4i)=....L1(h)=aex+b2x+ce2ix+de2ixatformaex+be2x+αcos(2x)+βsin(2x)sothegeneralsolutionisy(x)=aex+be2x+αcos(2x)+βsin(2x)

Answered by mathmax by abdo last updated on 10/Jun/20

 { ((x^′  =x−2y  ⇒          ((x^′ ),(y^′ ) )=A  ((x),(y) ))),((y^′ =−2x +y)) :}   with  A = (((1        −2)),((−2         1)) )  let X = ((x),(h) )    e ⇒X^′  =A X ⇒  X (t)=k e^(A(t−t_0 ))  let find   e^(tA)   p_c (A) =det(A−xI) = determinant (((1−x       −2)),((−2        1−x)))=(1−x)^2 −4 =(1−x−2)(1−x+2)  =(−x−1)(3−x) =(x+1)(x−3)  so the values are λ_1 =−1 and λ_2 =3  x^n  =p_c (x)q +u_n x +v_n  ⇒(−1)^n  =−u_n +v_n  and 3^n  =3u_n  +v_n  ⇒  4u_n =3^n −(−1)^n  ⇒ u_n =(((3)^n −(−1)^n )/4)  v_n =u_n  +(−1)^n  =((3^n −(−1)^n )/4) +(−1)^n  =((3^n −(−1)^n  +4(−1)^n )/4) =((3^n  +3(−1)^n )/4)  A^n  =u_n  A +v_n I=((3^n −(−1)^n )/4) (((1          −2)),((−2          1)) )  +((3^n  +3(−1)^n )/4) (((1         0)),((0          1)) )  =(1/4) (((3^n −(−1)^n     −2(3^n −(−1)^n ))),((−2(3^n −(−1)^n        3^n −(−1)^n )) ) +(1/4) (((3^n  +3(−1)^n         0   )),((0                 3^n  +3(−1)^n                   )) )  =(1/4) (((2.3^n  +2(−1)^n                  −2.3^n  +2(−1)^n )),((−2.3^n  +2(−1)^n                    2.3^n  +2(−1)^n )) )  e^(tA )  =Σ_(n=0) ^∞  (t^n /(n!)) A^n   =(1/4)Σ_(n=0) ^∞  (t^n /(n!))  (((2.3^n  +2(−1)^n             −2.3^n  +2(−1)^n )),((−2.3^n  +2(−1)^n            2.3^n  +2(−1)^n )) )  =(1/2) Σ_(n=0) ^∞  (t^n /(n!))  (((3^n  +(−1)^n            −3^n  +(−1)^n )),((−3^n  +(−1)^n             3^n  +(−1)^n )) )  =(1/2) ((( Σ_(n=0) ^∞  (((3t)^n )/(n!)) +Σ_(n=0) ^∞  (((−t)^n )/(n!))                    −Σ_(n=0) ^∞  (((3t)^n )/(n!))+Σ_(n=0) ^∞  (((−t)^n )/(n!)))),((......                                                                            ....)) )  =(1/2) (((e^(3t)  +e^(−t)              −e^(3t)  +e^(−t)      )),((−e^(3t)   +e^(−t)       e^(3t)  +e^(−t) )) )  X(t) =k e^(A(t−t_0 ))

{x=x2y(xy)=A(xy)y=2x+ywithA=(1221)letX=(xh)eX=AXX(t)=keA(tt0)letfindetApc(A)=det(AxI)=|1x221x|=(1x)24=(1x2)(1x+2)=(x1)(3x)=(x+1)(x3)sothevaluesareλ1=1andλ2=3xn=pc(x)q+unx+vn(1)n=un+vnand3n=3un+vn4un=3n(1)nun=(3)n(1)n4vn=un+(1)n=3n(1)n4+(1)n=3n(1)n+4(1)n4=3n+3(1)n4An=unA+vnI=3n(1)n4(1221)+3n+3(1)n4(1001)=14(3n(1)n2(3n(1)n)2(3n(1)n3n(1)n)+14(3n+3(1)n003n+3(1)n)=14(2.3n+2(1)n2.3n+2(1)n2.3n+2(1)n2.3n+2(1)n)etA=n=0tnn!An=14n=0tnn!(2.3n+2(1)n2.3n+2(1)n2.3n+2(1)n2.3n+2(1)n)=12n=0tnn!(3n+(1)n3n+(1)n3n+(1)n3n+(1)n)=12(n=0(3t)nn!+n=0(t)nn!n=0(3t)nn!+n=0(t)nn!..........)=12(e3t+ete3t+ete3t+ete3t+et)X(t)=keA(tt0)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com