Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 97919 by Lekhraj last updated on 10/Jun/20

Commented by MJS last updated on 10/Jun/20

p(x)=ax^5 +bx^4 +cx^3 +dx^2 +ex+f  insert the given pairs (x, p(x)) and  solve for the constants  ⇒  p(x)=−(x^5 /(40))+((11x^4 )/(24))−((25x^3 )/8)+((241x^2 )/(24))−((287x)/(20))+8  p(7)=8

p(x)=ax5+bx4+cx3+dx2+ex+finsertthegivenpairs(x,p(x))andsolvefortheconstantsp(x)=x540+11x42425x38+241x224287x20+8p(7)=8

Commented by mr W last updated on 10/Jun/20

answer correct sir. i got the same  using an other method.

answercorrectsir.igotthesameusinganothermethod.

Answered by mr W last updated on 10/Jun/20

an attempt without solving eqn.  and even without using a calculator:    p(1)=1  ⇒p(x)=a(x)(x−1)+1    p(2)=a(2)(2−1)+1=1  ⇒a(2)=0  ⇒a(x)=b(x)(x−2)  ⇒p(x)=b(x)(x−2)(x−1)+1    p(3)=b(3)(3−2)(3−1)+1=2  ⇒b(3)=(1/2)  ⇒b(x)=c(x)(x−3)+(1/2)  ⇒p(x)=[c(x)(x−3)+(1/2)](x−2)(x−1)+1    ⇒p(4)=[c(4)(4−3)+(1/2)](4−2)(4−1)+1=3  ⇒c(4)=−(1/6)  ⇒c(x)=d(x)(x−4)−(1/6)  ⇒p(x)={[d(x)(x−4)−(1/6)](x−3)+(1/2)}(x−2)(x−1)+1    p(5)={[d(5)(5−4)−(1/6)](5−3)+(1/2)}(5−2)(5−1)+1=5  ⇒d(5)=(1/(12))  ⇒d(x)=e(x)(x−5)+(1/(12))  ⇒p(x)={[{e(x)(x−5)+(1/(12))}(x−4)−(1/6)](x−3)+(1/2)}(x−2)(x−1)+1    p(6)={[{e(6)(6−5)+(1/(12))}(6−4)−(1/6)](6−3)+(1/2)}(6−2)(6−1)+1=8  ⇒e(6)=−(1/(40))  ⇒e(x)=−(1/(40))=constant, since p(x) is quintic.  ⇒p(x)={{{−(1/(40))(x−5)+(1/(12))}(x−4)−(1/6)}(x−3)+(1/2)}(x−2)(x−1)+1    ⇒p(7)={{{−(1/(40))(7−5)+(1/(12))}(7−4)−(1/6)}(7−3)+(1/2)}(7−2)(7−1)+1  ={{{−(1/(20))+(1/(12))}3−(1/6)}4+(1/2)}30+1  ={−(4/(15))+(1/2)}30+1  =−8+15+1  =8

anattemptwithoutsolvingeqn.andevenwithoutusingacalculator:p(1)=1p(x)=a(x)(x1)+1p(2)=a(2)(21)+1=1a(2)=0a(x)=b(x)(x2)p(x)=b(x)(x2)(x1)+1p(3)=b(3)(32)(31)+1=2b(3)=12b(x)=c(x)(x3)+12p(x)=[c(x)(x3)+12](x2)(x1)+1p(4)=[c(4)(43)+12](42)(41)+1=3c(4)=16c(x)=d(x)(x4)16p(x)={[d(x)(x4)16](x3)+12}(x2)(x1)+1p(5)={[d(5)(54)16](53)+12}(52)(51)+1=5d(5)=112d(x)=e(x)(x5)+112p(x)={[{e(x)(x5)+112}(x4)16](x3)+12}(x2)(x1)+1p(6)={[{e(6)(65)+112}(64)16](63)+12}(62)(61)+1=8e(6)=140e(x)=140=constant,sincep(x)isquintic.p(x)={{{140(x5)+112}(x4)16}(x3)+12}(x2)(x1)+1p(7)={{{140(75)+112}(74)16}(73)+12}(72)(71)+1={{{120+112}316}4+12}30+1={415+12}30+1=8+15+1=8

Commented by MJS last updated on 10/Jun/20

great!  method using only subtraction and addition:  1  1  2  3  5  8 8    0  1  1  2  3 0       1  0  1  1 −3     −1  1  0 −4           2 −1 −4            −3 −3

great!methodusingonlysubtractionandaddition:112358801123010113110421433

Commented by mr W last updated on 10/Jun/20

nice illustration! i didn′t think of  this.

niceillustration!ididntthinkofthis.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com