All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 97968 by HamraboyevFarruxjon last updated on 11/Jun/20
Commented by 06122004 last updated on 10/Jun/20
Osonmasmi ��
Answered by 1549442205 last updated on 11/Jun/20
ApplyingBunhiacopxky′sinequality:(a1x1+a2x2+...+anxn)2⩽(a12+a22+...+an2)(x12+x22+...+xn2)wehave(a1+a2+...+an)2=(a1a2+a3.a1(a2+a3)+a2a3+a4.a2(a3+a4)+...+ana1+a2.an(a1+a2))2⩽(a1a2+a3+a2a3+a4+...+ana1+a2)(a1a2+a1a3+...+ana1+ana2)wegeta1a2+a3+a2a3+a4+...+ana1+a2⩾(a1+a1+...+an)2a1a2+a1a3+...+ana1+ana2.Nowweneedtoprovethat(a1+a1+...+an)2a1a2+a1a3+...+ana1+ana2⩾n2⇔2(a1+a1+...+an)2⩾n(a1a2+a1a3+...+ana1+ana2)⇔2(a12+a22+...+an2)−2Σi≠jaiaj=(a1−a2)2+(a2−a3)2+...+(an−a1)2⩾0Theequlitysignoccursifandonlyifa1=a2=...=an(q.e.d)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com