Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 97984 by abdomathmax last updated on 10/Jun/20

calculate Σ_(k=0) ^n  (((−1)^k )/(2k+1)) C_n ^k

calculatek=0n(1)k2k+1Cnk

Answered by mr W last updated on 11/Jun/20

(1−x^2 )^n =Σ_(k=0) ^n C_k ^n (−x^2 )^k   (1−x^2 )^n =Σ_(k=0) ^n C_k ^n (−1)^k x^(2k)   ∫_0 ^1 (1−x^2 )^n dx=Σ_(k=0) ^n C_k ^n (−1)^k ∫_0 ^1 x^(2k) dx  ∫_0 ^1 (1−x^2 )^n dx=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ∫_0 ^(π/2) (1−sin^2  t)^n cos t dt=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ∫_0 ^(π/2) cos^(2n+1) t dt=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ((2n)/(2n+1))×((2n−2)/(2n−1))×...×(2/3)×∫_0 ^(π/2) cos t dt=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ((2n)/(2n+1))×((2n−2)/(2n−1))×...×(2/3)×1=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   (((2n)!!)/((2n+1)!!))=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   (([(2n)!!]^2 )/((2n+1)!))=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   (([2^n n!]^2 )/((2n+1)!))=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ⇒Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n =((2^(2n) (n!)^2 )/((2n+1)!))

(1x2)n=nk=0Ckn(x2)k(1x2)n=nk=0Ckn(1)kx2k01(1x2)ndx=nk=0Ckn(1)k01x2kdx01(1x2)ndx=nk=0(1)k2k+1Ckn0π2(1sin2t)ncostdt=nk=0(1)k2k+1Ckn0π2cos2n+1tdt=nk=0(1)k2k+1Ckn2n2n+1×2n22n1×...×23×0π2costdt=nk=0(1)k2k+1Ckn2n2n+1×2n22n1×...×23×1=nk=0(1)k2k+1Ckn(2n)!!(2n+1)!!=nk=0(1)k2k+1Ckn[(2n)!!]2(2n+1)!=nk=0(1)k2k+1Ckn[2nn!]2(2n+1)!=nk=0(1)k2k+1Cknnk=0(1)k2k+1Ckn=22n(n!)2(2n+1)!

Commented by mathmax by abdo last updated on 10/Jun/20

thank you sir mrw

thankyousirmrw

Answered by mathmax by abdo last updated on 11/Jun/20

let p(x) =Σ_(k=0) ^n  (((−1)^k )/(2k+1)) C_n ^k  x^(2k+1 )  we have   p^′ (x) =Σ_(k=0) ^n  (−1)^k  C_n ^k  x^(2k)  =(−1)^n Σ_(k=0) ^n  C_n ^k  (x^2 )^k (−1)^(n−k)   =(−1)^n (x^2 −1)^n  =(1−x^2 )^n  ⇒p(x) =∫_0 ^x  (1−t^2 )^n  dt+c(c=0) and S_n =p(1)  =∫_0 ^1 (1−t^2 )^n  dt =_(t =sinθ)    ∫_0 ^(π/2) (cos^2 θ)^n  cosθ dθ =∫_0 ^(π/2)  cos^(2n+1) θ dθ =  let U_n =∫_0 ^(π/2)  cos^n t dt ⇒U_n =∫_0 ^(π/2)  cos^(n−2) t (1−sin^2 t)dt  =U_(n−2) −∫_0 ^(π/2)  sin^2 t cos^(n−2) t dt  but   by parts f^′  =sint cos^(n−2)  and g =sint  ∫_0 ^(π/2)  sint(sintcos^(n−2) t)dt =[−(1/(n−1))cos^(n−1) t sint]_0 ^(π/2)  +(1/(n−1))∫_0 ^(π/2) cost cos^(n−1)  t dt  =(1/(n−1))U_n  ⇒U_n =U_(n−2) −(1/(n−1))U_(n )  ⇒(1+(1/(n−1)))U_n =U_(n−2)  ⇒  (n/(n−1))U_n =U_(n−2)  ⇒U_n =((n−1)/n) U_(n−2)  ⇒U_(2n+1) =((2n)/(2n+1)) U_(2n−1)  ⇒  Π_(k=1) ^n  U_(2k+1) =Π_(k=1) ^n  ((2k)/((2k+1))) Π_(k=1) ^n  U_(2k−1)  ⇒  U_(2n+1) =U_1 × Π_(k=1) ^n  ((2k)/((2k+1)))  (U_1 =1) ⇒S_n =∫_0 ^(π/2)  cos^(2n+1) t dt =Π_(k=1) ^n  ((2k)/((2k+1)))

letp(x)=k=0n(1)k2k+1Cnkx2k+1wehavep(x)=k=0n(1)kCnkx2k=(1)nk=0nCnk(x2)k(1)nk=(1)n(x21)n=(1x2)np(x)=0x(1t2)ndt+c(c=0)andSn=p(1)=01(1t2)ndt=t=sinθ0π2(cos2θ)ncosθdθ=0π2cos2n+1θdθ=letUn=0π2cosntdtUn=0π2cosn2t(1sin2t)dt=Un20π2sin2tcosn2tdtbutbypartsf=sintcosn2andg=sint0π2sint(sintcosn2t)dt=[1n1cosn1tsint]0π2+1n10π2costcosn1tdt=1n1UnUn=Un21n1Un(1+1n1)Un=Un2nn1Un=Un2Un=n1nUn2U2n+1=2n2n+1U2n1k=1nU2k+1=k=1n2k(2k+1)k=1nU2k1U2n+1=U1×k=1n2k(2k+1)(U1=1)Sn=0π2cos2n+1tdt=k=1n2k(2k+1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com