Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98016 by bemath last updated on 11/Jun/20

∫_0 ^1  ((ln^2 (x))/(x^2 +1)) dx ?

10ln2(x)x2+1dx?

Commented by bobhans last updated on 11/Jun/20

substitution w = −ln (x) , x = e^(−w)   I= ∫_∞ ^0  (((−w)^2 )/(1+(e^(−w) )^2 )) (−e^(−w)  dw)  I= ∫_0 ^∞  w^2 .(e^(−w) /(1+e^(−2w) )) dw   [ (e^(−w) /(1+e^(−2w) )) = Σ_(n =0) ^∞ (−1)^(n−1)  e^(−(2n+1)w)  ]  I= Σ_(n=1) ^∞ (−1)^n  ∫_0 ^∞  ((t/(2n+1)))^2 e^(−t)  (dt/(2n+1));   where t = (2n+1)w   I= Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^3 )) ∫_0 ^∞  t^2  e^(−t)  dt   I= Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^3 )) .2!  = 2 × Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^3 ))  I= 2×  (π^3 /(32)) = (π^3 /(16)) ■

substitutionw=ln(x),x=ewI=0(w)21+(ew)2(ewdw)I=0w2.ew1+e2wdw[ew1+e2w=n=0(1)n1e(2n+1)w]I=n=1(1)n0(t2n+1)2etdt2n+1;wheret=(2n+1)wI=n=0(1)n(2n+1)30t2etdtI=n=0(1)n(2n+1)3.2!=2×n=0(1)n(2n+1)3I=2×π332=π316

Commented by  M±th+et+s last updated on 11/Jun/20

go to Q.97369

gotoQ.97369

Commented by bemath last updated on 13/Jun/20

greatt

greatt

Answered by mathmax by abdo last updated on 11/Jun/20

I =∫_0 ^1  ((ln^2 x)/(x^2  +1))dx ⇒I =∫_0 ^1 ln^2 (x)(Σ_(n=0) ^∞ (−1)^n  x^(2n) )dx  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  ln^2 x x^(2n)  dx  let A_n =∫_0 ^1  ln^2 x x^(2n)  dx changement lnx =−t  give A_n =−∫_0 ^∞  t^2 (e^(−t) )^(2n)  (−e^(−t) )dt  =∫_0 ^∞  t^(2 )  e^(−(2n+1)t)  dt =_((2n+1)t =u)   ∫_0 ^∞  (u^2 /((2n+1)^2 )) e^(−u)   (du/((2n+1)))  =(1/((2n+1)^3 )) ∫_0 ^∞  u^2  e^(−u) du  but  ∫_0 ^∞  t^(x−1)  e^(−t)  dt =Γ(x) ⇒∫_0 ^∞  u^2  e^(−u)  du =Γ(3)=2!=2  ⇒A_n =(2/((2n+1)^3 )) ⇒ I =2 Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^3 )) rest to calculate this serie by fourier...

I=01ln2xx2+1dxI=01ln2(x)(n=0(1)nx2n)dx=n=0(1)n01ln2xx2ndxletAn=01ln2xx2ndxchangementlnx=tgiveAn=0t2(et)2n(et)dt=0t2e(2n+1)tdt=(2n+1)t=u0u2(2n+1)2eudu(2n+1)=1(2n+1)30u2eudubut0tx1etdt=Γ(x)0u2eudu=Γ(3)=2!=2An=2(2n+1)3I=2n=0(1)n(2n+1)3resttocalculatethisseriebyfourier...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com