Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 98018 by hardylanes last updated on 11/Jun/20

the vector equations of two lines l_1  and l_2  are given by  l_1 :r=5i−j+k+λ(−3i+2j)  l_2 :r=2i+3j+2k+μ(2j+k)  find  thd position vdctor of intersection of thf linds l_1  and l_2    thd cartesian equatkon of the plane π, containing the lines l_(1 ) and l_2   the sine of the anhle between the plane π and the line, l_3 :r=i−5j−2k+s(2i+2j−k)

$${the}\:{vector}\:{equations}\:{of}\:{two}\:{lines}\:{l}_{\mathrm{1}} \:{and}\:{l}_{\mathrm{2}} \:{are}\:{given}\:{by} \\ $$$${l}_{\mathrm{1}} :{r}=\mathrm{5}{i}−{j}+{k}+\lambda\left(−\mathrm{3}{i}+\mathrm{2}{j}\right) \\ $$$${l}_{\mathrm{2}} :{r}=\mathrm{2}{i}+\mathrm{3}{j}+\mathrm{2}{k}+\mu\left(\mathrm{2}{j}+{k}\right) \\ $$$${find} \\ $$$${thd}\:{position}\:{vdctor}\:{of}\:{intersection}\:{of}\:{thf}\:{linds}\:{l}_{\mathrm{1}} \:{and}\:{l}_{\mathrm{2}} \: \\ $$$${thd}\:{cartesian}\:{equatkon}\:{of}\:{the}\:{plane}\:\pi,\:{containing}\:{the}\:{lines}\:{l}_{\mathrm{1}\:} {and}\:{l}_{\mathrm{2}} \\ $$$${the}\:{sine}\:{of}\:{the}\:{anhle}\:{between}\:{the}\:{plane}\:\pi\:{and}\:{the}\:{line},\:{l}_{\mathrm{3}} :{r}={i}−\mathrm{5}{j}−\mathrm{2}{k}+{s}\left(\mathrm{2}{i}+\mathrm{2}{j}−{k}\right) \\ $$

Answered by Rio Michael last updated on 11/Jun/20

(a) l_1  : r = (5−3λ)i + (−1 + 2λ)j + k = (((5−3λ)),((−1 + 2λ)),(1) )  l_2 : r = 2i + (3 + 2μ)j + (2 + μ)k =  ((2),((3 + 2μ)),((2 + μ)) )  at intersection, l_1  = l_(2 )  ⇒  5−3λ = 2 ⇔ λ = 1  and  2 + μ = 1 ⇔ μ = −1  point of intersection r_0  = 2i + j + k  (b) equation of plane  r.n = r_0 .n  n^�  = d_1  ×d_2  =  determinant ((i,j,k),((−3),2,0),(0,2,1)) = i determinant ((2,0),(2,1))−j determinant (((−3),0),(0,1))+ k determinant (((−3),2),(0,2))= 2i +3j −6k  ⇒   r.(2i + 3j−6k) = (2i + j +k).(2i+3j−6k)           2x + 3y−6z = 1  (c) sin θ = ((n.d)/(∣n∣∣d∣)) = (((2i +3j−6k).(2i + 2j−k))/((√(49)) .(√9))) = ((16)/(21))   ⇒ sin θ = ((16)/(21))

$$\left(\mathrm{a}\right)\:{l}_{\mathrm{1}} \::\:{r}\:=\:\left(\mathrm{5}−\mathrm{3}\lambda\right){i}\:+\:\left(−\mathrm{1}\:+\:\mathrm{2}\lambda\right){j}\:+\:{k}\:=\begin{pmatrix}{\mathrm{5}−\mathrm{3}\lambda}\\{−\mathrm{1}\:+\:\mathrm{2}\lambda}\\{\mathrm{1}}\end{pmatrix} \\ $$$${l}_{\mathrm{2}} :\:{r}\:=\:\mathrm{2}{i}\:+\:\left(\mathrm{3}\:+\:\mathrm{2}\mu\right){j}\:+\:\left(\mathrm{2}\:+\:\mu\right){k}\:=\:\begin{pmatrix}{\mathrm{2}}\\{\mathrm{3}\:+\:\mathrm{2}\mu}\\{\mathrm{2}\:+\:\mu}\end{pmatrix} \\ $$$$\mathrm{at}\:\mathrm{intersection},\:{l}_{\mathrm{1}} \:=\:{l}_{\mathrm{2}\:} \:\Rightarrow\:\:\mathrm{5}−\mathrm{3}\lambda\:=\:\mathrm{2}\:\Leftrightarrow\:\lambda\:=\:\mathrm{1} \\ $$$$\mathrm{and}\:\:\mathrm{2}\:+\:\mu\:=\:\mathrm{1}\:\Leftrightarrow\:\mu\:=\:−\mathrm{1} \\ $$$$\mathrm{point}\:\mathrm{of}\:\mathrm{intersection}\:{r}_{\mathrm{0}} \:=\:\mathrm{2}{i}\:+\:{j}\:+\:{k} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{equation}\:\mathrm{of}\:\mathrm{plane}\:\:{r}.{n}\:=\:{r}_{\mathrm{0}} .{n} \\ $$$$\bar {{n}}\:=\:{d}_{\mathrm{1}} \:×{d}_{\mathrm{2}} \:=\:\begin{vmatrix}{{i}}&{{j}}&{{k}}\\{−\mathrm{3}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{1}}\end{vmatrix}\:=\:{i}\begin{vmatrix}{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{2}}&{\mathrm{1}}\end{vmatrix}−{j}\begin{vmatrix}{−\mathrm{3}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{vmatrix}+\:{k}\begin{vmatrix}{−\mathrm{3}}&{\mathrm{2}}\\{\mathrm{0}}&{\mathrm{2}}\end{vmatrix}=\:\mathrm{2}{i}\:+\mathrm{3}{j}\:−\mathrm{6}{k} \\ $$$$\Rightarrow\:\:\:{r}.\left(\mathrm{2}{i}\:+\:\mathrm{3}{j}−\mathrm{6}{k}\right)\:=\:\left(\mathrm{2}{i}\:+\:{j}\:+{k}\right).\left(\mathrm{2}{i}+\mathrm{3}{j}−\mathrm{6}{k}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}{x}\:+\:\mathrm{3}{y}−\mathrm{6}{z}\:=\:\mathrm{1} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{sin}\:\theta\:=\:\frac{{n}.{d}}{\mid{n}\mid\mid{d}\mid}\:=\:\frac{\left(\mathrm{2}{i}\:+\mathrm{3}{j}−\mathrm{6}{k}\right).\left(\mathrm{2}{i}\:+\:\mathrm{2}{j}−{k}\right)}{\sqrt{\mathrm{49}}\:.\sqrt{\mathrm{9}}}\:=\:\frac{\mathrm{16}}{\mathrm{21}} \\ $$$$\:\Rightarrow\:\mathrm{sin}\:\theta\:=\:\frac{\mathrm{16}}{\mathrm{21}} \\ $$

Commented by hardylanes last updated on 11/Jun/20

thanks again

Commented by peter frank last updated on 11/Jun/20

good

$$\mathrm{good} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com