Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 98057 by PengagumRahasiamu last updated on 11/Jun/20

The number of real solutions of  3^x +4^x =5^x  is ____.

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mathrm{3}^{{x}} +\mathrm{4}^{{x}} =\mathrm{5}^{{x}} \:\mathrm{is}\:\_\_\_\_. \\ $$

Answered by Rio Michael last updated on 11/Jun/20

let f(x) = 3^x +4^x  −5^x  = 0  for x ≤2 , f(x) is positive.  for x x ≥ 3, f(x) is negative.  so f(x) is a decreasing function thus  it must have only one root between 2 and 3.  x ≈ 2.73...

$$\mathrm{let}\:{f}\left({x}\right)\:=\:\mathrm{3}^{{x}} +\mathrm{4}^{{x}} \:−\mathrm{5}^{{x}} \:=\:\mathrm{0} \\ $$$$\mathrm{for}\:{x}\:\leqslant\mathrm{2}\:,\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{positive}. \\ $$$$\mathrm{for}\:{x}\:{x}\:\geqslant\:\mathrm{3},\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{negative}. \\ $$$$\mathrm{so}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{decreasing}\:\mathrm{function}\:\mathrm{thus} \\ $$$$\mathrm{it}\:\mathrm{must}\:\mathrm{have}\:\mathrm{only}\:\mathrm{one}\:\mathrm{root}\:\mathrm{between}\:\mathrm{2}\:\mathrm{and}\:\mathrm{3}. \\ $$$${x}\:\approx\:\mathrm{2}.\mathrm{73}... \\ $$

Commented by mr W last updated on 11/Jun/20

x=2:  3^2 +4^2 =5^2

$${x}=\mathrm{2}: \\ $$$$\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$

Answered by 1549442205 last updated on 12/Jun/20

We prove that this equation has unique  real root x=2.Indeed,dividing both two sides of  given equation by 5^x we get  ((3/5))^x +((5/5))^x =1.It is easy to see that x=2 satisfy since ((3/5))^2 +((5/5))^2 =(9/(25))+((16)/(25))=1  which means that x=2 be a root of given eq.  Also,it is easy to see that the functions  f(x)=((3/5))^x and g(x)=((4/5))^x are decreasing on(−∞;+∞)  because f ′(x)=((3/5))^x ln(3/5)<0,g′(x)=((4/5))^x ln(4/5)<0  on (−∞;+∞).Hence,  a/For x<2 we have ((3/5))^x +((5/5))^x >((3/5))^2 +((5/5))^2 =1  b/For x>2 we have ((3/5))^x +((5/5))^x <((3/5))^2 +((5/5))^2 =1  That show that x=2 is unique real root of  the given equation

$$\mathrm{We}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{this}\:\mathrm{equation}\:\mathrm{has}\:\mathrm{unique} \\ $$$$\mathrm{real}\:\mathrm{root}\:\mathrm{x}=\mathrm{2}.\mathrm{Indeed},\mathrm{dividing}\:\mathrm{both}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{of} \\ $$$$\mathrm{given}\:\mathrm{equation}\:\mathrm{by}\:\mathrm{5}^{\mathrm{x}} \mathrm{we}\:\mathrm{get} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{x}} +\left(\frac{\mathrm{5}}{\mathrm{5}}\right)^{\mathrm{x}} =\mathrm{1}.\mathrm{It}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{that}\:\mathrm{x}=\mathrm{2}\:\mathrm{satisfy}\:\mathrm{since}\:\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{5}}{\mathrm{5}}\right)^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{25}}+\frac{\mathrm{16}}{\mathrm{25}}=\mathrm{1} \\ $$$$\mathrm{which}\:\mathrm{means}\:\mathrm{that}\:\mathrm{x}=\mathrm{2}\:\mathrm{be}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{given}\:\mathrm{eq}. \\ $$$$\mathrm{Also},\mathrm{it}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{that}\:\mathrm{the}\:\mathrm{functions} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{x}} \mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)=\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{\mathrm{x}} \mathrm{are}\:\mathrm{decreasing}\:\mathrm{on}\left(−\infty;+\infty\right) \\ $$$$\mathrm{because}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{x}} \mathrm{ln}\frac{\mathrm{3}}{\mathrm{5}}<\mathrm{0},\mathrm{g}'\left(\mathrm{x}\right)=\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{\mathrm{x}} \mathrm{ln}\frac{\mathrm{4}}{\mathrm{5}}<\mathrm{0} \\ $$$$\mathrm{on}\:\left(−\infty;+\infty\right).\mathrm{Hence}, \\ $$$$\mathrm{a}/\mathrm{For}\:\mathrm{x}<\mathrm{2}\:\mathrm{we}\:\mathrm{have}\:\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{x}} +\left(\frac{\mathrm{5}}{\mathrm{5}}\right)^{\mathrm{x}} >\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{5}}{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{b}/\mathrm{For}\:\mathrm{x}>\mathrm{2}\:\mathrm{we}\:\mathrm{have}\:\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{x}} +\left(\frac{\mathrm{5}}{\mathrm{5}}\right)^{\mathrm{x}} <\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{5}}{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{That}\:\mathrm{show}\:\mathrm{that}\:\mathrm{x}=\mathrm{2}\:\mathrm{is}\:\mathrm{unique}\:\mathrm{real}\:\mathrm{root}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{given}\:\mathrm{equation} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com