Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 98058 by PengagumRahasiamu last updated on 11/Jun/20

If the equation x^2 −cx+d=0 has roots  equal to the fourth powers of the roots  of x^2 +ax+b=0, where a^2 >4b then the  roots of x^2 −4bx+2b^2 −c=0 will be

$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} −{cx}+{d}=\mathrm{0}\:\mathrm{has}\:\mathrm{roots} \\ $$ $$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{powers}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots} \\ $$ $$\mathrm{of}\:{x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0},\:\mathrm{where}\:{a}^{\mathrm{2}} >\mathrm{4}{b}\:\mathrm{then}\:\mathrm{the} \\ $$ $$\mathrm{roots}\:\mathrm{of}\:{x}^{\mathrm{2}} −\mathrm{4}{bx}+\mathrm{2}{b}^{\mathrm{2}} −{c}=\mathrm{0}\:\mathrm{will}\:\mathrm{be} \\ $$

Answered by Rio Michael last updated on 11/Jun/20

Both real(one is positive and the other negative)  see how:  let x^2  + ax + b = 0 have roots α and β  then the roots of x^2 −cx +d = 0 are  α^4  and β^4   α + β = −a and αβ = b  also α^4  + β^4  = c and α^4 β^4  = d  ⇒ b^4  = d and α^4  + β^4  = c  (α^2  +β^2 )^2 −2(αβ)^2  = c   [(α + β)^2 −2αβ]−2(αβ)^2  = c    (a^2 −2b^2 )−2b^2  = c  ⇒ 2b^2  + c = (a^2 −2b)^2   2b^2 −c = 4a^2 b−a^2                 = a^2 (4b−a^2 )  now for x^2 −4bx + 2b^2 −c = 0   discriminantD = (4b)^2 −4(1)(2b^2 −c)    = 16b^2 −8b^2  + 4c     = 8b^2  + 4c     = 4(2b^2  + c)     = 4(a^2 −2b)^2  >0 ⇒ real roots  f(0) = 2b^2 −c = a^2 (4b−a^2 ) < 0 ⇒ roots have opposite sign

$$\mathrm{Both}\:\mathrm{real}\left(\mathrm{one}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{negative}\right) \\ $$ $$\mathrm{see}\:\mathrm{how}: \\ $$ $$\mathrm{let}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\mathrm{0}\:\mathrm{have}\:\mathrm{roots}\:\alpha\:\mathrm{and}\:\beta \\ $$ $$\mathrm{then}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{x}^{\mathrm{2}} −{cx}\:+{d}\:=\:\mathrm{0}\:\mathrm{are}\:\:\alpha^{\mathrm{4}} \:\mathrm{and}\:\beta^{\mathrm{4}} \\ $$ $$\alpha\:+\:\beta\:=\:−{a}\:\mathrm{and}\:\alpha\beta\:=\:{b} \\ $$ $$\mathrm{also}\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:=\:{c}\:\mathrm{and}\:\alpha^{\mathrm{4}} \beta^{\mathrm{4}} \:=\:{d} \\ $$ $$\Rightarrow\:{b}^{\mathrm{4}} \:=\:{d}\:\mathrm{and}\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:=\:{c} \\ $$ $$\left(\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta\right)^{\mathrm{2}} \:=\:{c} \\ $$ $$\:\left[\left(\alpha\:+\:\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta\right]−\mathrm{2}\left(\alpha\beta\right)^{\mathrm{2}} \:=\:{c} \\ $$ $$\:\:\left({a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} \right)−\mathrm{2}{b}^{\mathrm{2}} \:=\:{c}\:\:\Rightarrow\:\mathrm{2}{b}^{\mathrm{2}} \:+\:{c}\:=\:\left({a}^{\mathrm{2}} −\mathrm{2}{b}\right)^{\mathrm{2}} \\ $$ $$\mathrm{2}{b}^{\mathrm{2}} −{c}\:=\:\mathrm{4}{a}^{\mathrm{2}} {b}−{a}^{\mathrm{2}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{a}^{\mathrm{2}} \left(\mathrm{4}{b}−{a}^{\mathrm{2}} \right) \\ $$ $$\mathrm{now}\:\mathrm{for}\:{x}^{\mathrm{2}} −\mathrm{4}{bx}\:+\:\mathrm{2}{b}^{\mathrm{2}} −{c}\:=\:\mathrm{0}\: \\ $$ $$\mathrm{discriminant}{D}\:=\:\left(\mathrm{4}{b}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{2}{b}^{\mathrm{2}} −{c}\right) \\ $$ $$\:\:=\:\mathrm{16}{b}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} \:+\:\mathrm{4}{c}\: \\ $$ $$\:\:=\:\mathrm{8}{b}^{\mathrm{2}} \:+\:\mathrm{4}{c}\: \\ $$ $$\:\:=\:\mathrm{4}\left(\mathrm{2}{b}^{\mathrm{2}} \:+\:{c}\right) \\ $$ $$\:\:\:=\:\mathrm{4}\left({a}^{\mathrm{2}} −\mathrm{2}{b}\right)^{\mathrm{2}} \:>\mathrm{0}\:\Rightarrow\:\mathrm{real}\:\mathrm{roots} \\ $$ $${f}\left(\mathrm{0}\right)\:=\:\mathrm{2}{b}^{\mathrm{2}} −{c}\:=\:{a}^{\mathrm{2}} \left(\mathrm{4}{b}−{a}^{\mathrm{2}} \right)\:<\:\mathrm{0}\:\Rightarrow\:\mathrm{roots}\:\mathrm{have}\:\mathrm{opposite}\:\mathrm{sign}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com