Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98105 by mathmax by abdo last updated on 11/Jun/20

calculate ∫_3 ^(+∞)    (((x+1)dx)/((x−2)^2 ( 2x+3)^3 ))

calculate3+(x+1)dx(x2)2(2x+3)3

Answered by MJS last updated on 11/Jun/20

∫((x+1)/((x−2)^2 (2x+3)^3 ))dx=       [Ostrogradski]  =−((44x^2 +55x+8)/(686(x−2)(2x+3)^2 ))−((11)/(343))∫(dx/((x−2)(2x+3)))=  =−((44x^2 +55x+8)/(686(x−2)(2x+3)^2 ))+((11)/(2401))ln ∣((2x+3)/(x−2))∣ +C  ∫_3 ^(+∞) ((x+1)/((x−2)^2 (2x+3)^3 ))dx=((569)/(55566))+((11)/(2401))(ln 2 −2ln 3)

x+1(x2)2(2x+3)3dx=[Ostrogradski]=44x2+55x+8686(x2)(2x+3)211343dx(x2)(2x+3)==44x2+55x+8686(x2)(2x+3)2+112401ln2x+3x2+C+3x+1(x2)2(2x+3)3dx=56955566+112401(ln22ln3)

Commented by mathmax by abdo last updated on 11/Jun/20

thank you sir MJS

thankyousirMJS

Answered by mathmax by abdo last updated on 11/Jun/20

binome method     I =∫_3 ^(+∞)  (((x+1)dx)/((x−2)^2 (2x+3)^3 )) ⇒  I =∫_3 ^(+∞)  (((x+1)dx)/((((x−2)/(2x+3)))^2 (2x+3)^5 ))   changement ((x−2)/(2x+3)) =t give x−2=2tx+3t ⇒  (1−2t)x =3t+2 ⇒x =((3t+2)/(1−2t)) ⇒(dx/dt) =((3(1−2t)−(3t+2)(−2))/((1−2t)^2 ))  =((3−6t+6t+4)/((1−2t)^2 )) =(7/((1−2t)^2 ))   ,   2x+3 =((6t+4)/(1−2t)) +3 =((6t+4+3−6t)/(1−2t)) =(7/(1−2t))  x+1 =((3t+2)/(1−2t)) +1 =((3t+2+1−2t)/(1−2t)) =((t+3)/(1−2t)) ⇒  I =∫_(1/9) ^(1/2)  (((t+3))/((1−2t)t^2 ((7/(1−2t)))^5 ))×(7/((1−2t)^2 ))dt =(1/7^6 )∫_(1/9) ^(1/2)  (((t+3)(1−2t)^5 )/((1−2t)^3  t^2 ))dt  =(1/7^6 ) ∫_(1/9) ^(1/2)  (((t+3)(1−2t)^2 )/t^2 )dt  =(1/7^6 ) ∫_(1/9) ^(1/2)  (((t+3)(4t^2 −4t +1))/t^2 )dt  =(1/7^6 ) ∫_(1/9) ^(1/9)  ((4t^3  −4t^2 +t +12t^2 −12t +3)/t^2 )dt  =(1/7^6 ) ∫_(1/9) ^(1/(9 ))  ((4t^3 +8t^2 −11t +3)/t^2 )dt  =(1/7^6 ) ∫

binomemethodI=3+(x+1)dx(x2)2(2x+3)3I=3+(x+1)dx(x22x+3)2(2x+3)5changementx22x+3=tgivex2=2tx+3t(12t)x=3t+2x=3t+212tdxdt=3(12t)(3t+2)(2)(12t)2=36t+6t+4(12t)2=7(12t)2,2x+3=6t+412t+3=6t+4+36t12t=712tx+1=3t+212t+1=3t+2+12t12t=t+312tI=1912(t+3)(12t)t2(712t)5×7(12t)2dt=1761912(t+3)(12t)5(12t)3t2dt=1761912(t+3)(12t)2t2dt=1761912(t+3)(4t24t+1)t2dt=17619194t34t2+t+12t212t+3t2dt=17619194t3+8t211t+3t2dt=176

Commented by mathmax by abdo last updated on 11/Jun/20

I =(1/7^6 ) { ∫_(1/9) ^(1/2)  (4t +8−((11)/t) +(3/t^2 ))dt}  =(1/7^6 )[ 2t^2  +8t −11ln∣t∣ −(3/t)]_(1/9) ^(1/2)   =(1/7^6 )( (1/2) +4+11ln(2)−6 −2((1/9))^2  −8×(1/9) 11ln((1/9))+27) =...

I=176{1912(4t+811t+3t2)dt}=176[2t2+8t11lnt3t]1912=176(12+4+11ln(2)62(19)28×1911ln(19)+27)=...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com