Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 98185 by abdomathmax last updated on 12/Jun/20

developp at fourier serie  g(x) =(2/(3+sin^2 x))

developpatfourierserieg(x)=23+sin2x

Answered by mathmax by abdo last updated on 12/Jun/20

g(x) =(2/(3+sin^2 x)) =(2/(3+((1−cos(2x))/2))) =(4/(7−cos(2x))) =(4/(7−((e^(i2x) +e^(−i2x) )/2)))  =(8/(14−e^(2ix) −e^(−2ix) ))  =_(e^(2ix) =z)     (8/(14−z−z^(−1) )) =((8z)/(14z−z^2 −1)) =((−8z)/(z^2 −14z +1))=h(z)  z^2 −14z +1 =0→Δ^′  =7^2 −1 =48 ⇒z_1 =7+(√(48))=7+4(√3)  z_2 =7−4(√(3 )) so  ((−8z)/(z^2 −14z+1)) =((−8z)/((z−z_1 )(z−z_2 ))) =(a/(z−z_1 )) +(b/(z−z_2 ))  a =((−8z_1 )/(8(√3))) =−((7+4(√3))/(√3)) =−(7/(√3)) +4  b =((−8z_2 )/(−8(√3))) =((7−4(√3))/(√3)) =(7/(√3))−4 ⇒h(z)=((−a)/(z_1 −z))−(b/(z_2 −z)) =((−a)/(z_1 (1−(z/z_1 ))))−(b/(z_2 (1−(z/z_2 ))))  so for ∣z∣ <inf(∣z_1 ∣,∣z_2 ∣)  h(z) =−(a/z_1 )Σ_(n=0) ^∞  (z^n /z_1 ^n )−(b/z_2 ) Σ_(n=0) ^∞  (z^n /z_2 ^n )  =−(a/z_1 ) Σ_(n=0) ^∞  (1/z_1 ^n )e^(2inx)  −(b/z_2 ) Σ_(n=0) ^∞  (1/z_2 ^n ) e^(2inx)   =−Σ_(n=0) ^∞ ( (a/z_1 ^(n+1) ) +(b/z_2 ^(n+1) ))e^(2inx)  =g(x)

g(x)=23+sin2x=23+1cos(2x)2=47cos(2x)=47ei2x+ei2x2=814e2ixe2ix=e2ix=z814zz1=8z14zz21=8zz214z+1=h(z)z214z+1=0Δ=721=48z1=7+48=7+43z2=743so8zz214z+1=8z(zz1)(zz2)=azz1+bzz2a=8z183=7+433=73+4b=8z283=7433=734h(z)=az1zbz2z=az1(1zz1)bz2(1zz2)soforz<inf(z1,z2)h(z)=az1n=0znz1nbz2n=0znz2n=az1n=01z1ne2inxbz2n=01z2ne2inx=n=0(az1n+1+bz2n+1)e2inx=g(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com