Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 98189 by abdomathmax last updated on 12/Jun/20

let ξ(x) =Σ_(n=1) ^∞  (1/n^x )  calculate lim_(x→1^+ )    (x−1)ξ(x)

letξ(x)=n=11nxcalculatelimx1+(x1)ξ(x)

Answered by mathmax by abdo last updated on 12/Jun/20

the function  t→(1/t^x ) is  decreazing on ]1,+∞[  so  Σ_(k=2) ^n ∫_k ^(k+1)  (dt/t^x ) ≤  Σ_(k=2) ^n  (1/k^x ) ≤Σ_(k=2) ^n  ∫_(k−1) ^k  (dt/t^x )   ⇒  ∫_2 ^(n+1)  (dt/t^x ) ≤ ξ_n (x) ≤∫_1 ^n  (dt/t^x )   we have  ∫_2 ^(n+1)  (dt/t^x ) =∫_2 ^(n+1)  t^(−x)  dt =[(1/(1−x))t^(−x+1) ]_2 ^(n+1)   =(1/(1−x)){ (1/((n+1)^(x−1) ))−(1/2^(x−1) )} =(1/((x−1))){(1/2^(x−1) )−(1/((n+1)^(x−1) ))}  ∫_1 ^n  t^(−x)  dt =[(1/(−x+1)) t^(−x+1) ]_1 ^n  =(1/(1−x))[ (1/t^(x−1) )]_1 ^n  =(1/(1−x)){(1/n^(x−1) )−1}  =(1/(x−1)){1−(1/n^(x−1) )} ⇒ (1/(x−1)){(1/2^(x−1) )−(1/((n+1)^(x−1) ))} ≤ Σ_(k=1) ^n  (1/k^x )−1 ≤(1/(x−1)){1−(1/n^(x−1) )} ⇒  ∀x>1  (1/2^(x−1) ) −(1/((n+1)^(x−1) )) ≤(x−1)ξ_n (x)−(x−1)≤1−(1/n^(x−1) ) ⇒  ⇒(1/2^(x−1) ) ≤ (x−1)ξ(x)−(x−1)≤ 1 ⇒lim_(x→1^+ )    (1/2^(x−1) ) ≤lim_(x→1^+ )   (x−1)ξ(x)≤1  ⇒lim_(x→1^+ )   (x−1)ξ(x) =1

thefunctiont1txisdecreazingon]1,+[sok=2nkk+1dttxk=2n1kxk=2nk1kdttx2n+1dttxξn(x)1ndttxwehave2n+1dttx=2n+1txdt=[11xtx+1]2n+1=11x{1(n+1)x112x1}=1(x1){12x11(n+1)x1}1ntxdt=[1x+1tx+1]1n=11x[1tx1]1n=11x{1nx11}=1x1{11nx1}1x1{12x11(n+1)x1}k=1n1kx11x1{11nx1}x>112x11(n+1)x1(x1)ξn(x)(x1)11nx112x1(x1)ξ(x)(x1)1limx1+12x1limx1+(x1)ξ(x)1limx1+(x1)ξ(x)=1

Commented by mathmax by abdo last updated on 12/Jun/20

the important result here is that if f decrease  we have  ∫_k ^(k+1) f(t)dt ≤f(k)≤∫_(k−1) ^k  f(t)dt     here f(t) =(1/t^x )   (t>1)

theimportantresulthereisthatiffdecreasewehavekk+1f(t)dtf(k)k1kf(t)dtheref(t)=1tx(t>1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com