Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 98191 by behi83417@gmail.com last updated on 12/Jun/20

for what value of :{x∣ 0<x<2𝛑}:            4cosec^2 xβˆ’9=cotx

forwhatvalueof:{x∣0<x<2Ο€}: 4cosec2xβˆ’9=cotx

Answered by MJS last updated on 12/Jun/20

4cosec^2  x βˆ’9=cot x  9sin^2  x +sin x cos x βˆ’4=0  9cos 2x βˆ’sin 2x βˆ’1=0  x=arctan t  βˆ’((10t^2 +2tβˆ’8)/(t^2 +1))=0  t^2 +(1/5)tβˆ’(4/5)=0  t_1 =βˆ’1; t_2 =(4/5)  β‡’  x_(1.1) =((3Ο€)/4); x_(1.2) =((7Ο€)/4); x_(2.1) =arctan (4/5); x_(2.2) =Ο€+arctan (4/5)

4cosec2xβˆ’9=cotx 9sin2x+sinxcosxβˆ’4=0 9cos2xβˆ’sin2xβˆ’1=0 x=arctant βˆ’10t2+2tβˆ’8t2+1=0 t2+15tβˆ’45=0 t1=βˆ’1;t2=45 β‡’ x1.1=3Ο€4;x1.2=7Ο€4;x2.1=arctan45;x2.2=Ο€+arctan45

Answered by 1549442205 last updated on 12/Jun/20

we have (4/(sin^2 x))βˆ’9=((cosx)/(sinx))⇔4(1+cot^2 x)βˆ’9=cotx  4cot^2 xβˆ’cotxβˆ’5=0⇔(cotx+1)(4cotxβˆ’5)=0  a/cotx+1=0⇔cot x=βˆ’1=cot((3Ο€)/4)β‡’x∈{((3Ο€)/4);((7Ο€)/4)}  a/4cotxβˆ’5=0⇔cotx=(5/4)⇔tanx=(4/5)   β‡’x∈{arctan(4/5);arctan(4/5)+Ο€}  Thus,the roots in interval [0;2Ο€] of   given equation are:x∈{((3Ο€)/4);((7Ο€)/4);arctan(4/5);arctan(4/5)+Ο€}

wehave4sin2xβˆ’9=cosxsinx⇔4(1+cot2x)βˆ’9=cotx 4cot2xβˆ’cotxβˆ’5=0⇔(cotx+1)(4cotxβˆ’5)=0 a/cotx+1=0⇔cotx=βˆ’1=cot3Ο€4β‡’x∈{3Ο€4;7Ο€4} a/4cotxβˆ’5=0⇔cotx=54⇔tanx=45 β‡’x∈{arctan45;arctan45+Ο€} Thus,therootsininterval[0;2Ο€]of givenequationare:x∈{3Ο€4;7Ο€4;arctan45;arctan45+Ο€}

Commented bybehi83417@gmail.com last updated on 12/Jun/20

thank you very much sir.

thankyouverymuchsir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com