Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 98192 by behi83417@gmail.com last updated on 12/Jun/20

Commented by bemath last updated on 12/Jun/20

(x+y)^2 −xy=133   set (√(xy)) = u & x+y = v  ⇔v^2 −u^2  = 133 & v+u = 19  (v−u)(v+u) = 133  19(v−u) = 133 ⇒v−u=((133)/(19))=7  we get  { ((v=13)),((u=6)) :}   { ((xy=36)),((x+y=13)) :}  (x,y) =  { (((4,9))),(((9,4) )) :}

(x+y)2xy=133setxy=u&x+y=vv2u2=133&v+u=19(vu)(v+u)=13319(vu)=133vu=13319=7weget{v=13u=6{xy=36x+y=13(x,y)={(4,9)(9,4)

Answered by mr W last updated on 12/Jun/20

v=(√(xy))  u=x+y  x^2 +y^2 +2xy−xy=133  u^2 −v^2 =133  ⇒(u+v)(u−v)=133  u+v=19  ⇒u−v=((133)/(19))=7  ⇒u=x+y=((19+7)/2)=13  ⇒v=((19−7)/2)=6  ⇒xy=v^2 =36  x, y are roots of  t^2 −13t+36=0  t=((13±5)/2)=4, 9  ⇒(x,y)=(4, 9)

v=xyu=x+yx2+y2+2xyxy=133u2v2=133(u+v)(uv)=133u+v=19uv=13319=7u=x+y=19+72=13v=1972=6xy=v2=36x,yarerootsoft213t+36=0t=13±52=4,9(x,y)=(4,9)

Answered by MJS last updated on 12/Jun/20

I can see x=4∧y=9 ∨ x=9∧y=4 but how  to solve it?  x=u−v∧y=u+v   { ((3u^2 +v^2 −133=0)),((2u−19+(√(u^2 −v^2 ))=0)) :}   { ((v^2 =−3u^2 +133)),((v^2 =−3u^2 +76u−361)) :} ⇒ u=((13)/2)∧v=±(5/2)

Icanseex=4y=9x=9y=4buthowtosolveit?x=uvy=u+v{3u2+v2133=02u19+u2v2=0{v2=3u2+133v2=3u2+76u361u=132v=±52

Commented by behi83417@gmail.com last updated on 12/Jun/20

thanks to all my masters.

thankstoallmymasters.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com