Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 98244 by ~blr237~ last updated on 12/Jun/20

    ∫_0 ^(2π)    xe^(cosx) cos(sinx)dx= 2π^2

02πxecosxcos(sinx)dx=2π2

Answered by maths mind last updated on 15/Jun/20

e^(cos(x)+isin(x)) =e^(cos(x)) (cos(sin(x))+isin(sin(x)))  ∫_0 ^(2π) xe^(cos(x)+isin(x)) dx  =∫_0 ^(2π) xe^e^(ix)  dx  =∫_0 ^(2π) Σ_(k≥0) x.(e^(ikx) /(k!))  =Σ_(k≥0) (1/(k!))∫_0 ^(2π) xe^(ikx) dx  ∫_0 ^(2π) xe^(ikx) dx=[x(e^(ikx) /(ik))]−∫(e^(ik) /(ik))dx  =((2π)/(ik)) ,k≠0  if k=0  ∫_0 ^(2π) xdx=2π^2   Re{∫_0 ^(2π) xe^e^(ix)  dx}=∫_0 ^(2π) xe^(cos(x)) cos(sin(x))dx  =Re[2π^2 +Σ_(k≥1) ((2π)/(ik.k!))]  =2π^2   Σ(1/(kk!))=∫(e^x /x)dx=Σ_(k≥0) (x^k /(kk!))  ⇒∫xe^(cos(x)) sin(sin(x))dx=−2πE_i (1)

ecos(x)+isin(x)=ecos(x)(cos(sin(x))+isin(sin(x)))02πxecos(x)+isin(x)dx=02πxeeixdx=02πk0x.eikxk!=k01k!02πxeikxdx02πxeikxdx=[xeikxik]eikikdx=2πik,k0ifk=002πxdx=2π2Re{02πxeeixdx}=02πxecos(x)cos(sin(x))dx=Re[2π2+k12πik.k!]=2π2Σ1kk!=exxdx=k0xkkk!xecos(x)sin(sin(x))dx=2πEi(1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com