All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 98244 by ~blr237~ last updated on 12/Jun/20
∫02πxecosxcos(sinx)dx=2π2
Answered by maths mind last updated on 15/Jun/20
ecos(x)+isin(x)=ecos(x)(cos(sin(x))+isin(sin(x)))∫02πxecos(x)+isin(x)dx=∫02πxeeixdx=∫02π∑k⩾0x.eikxk!=∑k⩾01k!∫02πxeikxdx∫02πxeikxdx=[xeikxik]−∫eikikdx=2πik,k≠0ifk=0∫02πxdx=2π2Re{∫02πxeeixdx}=∫02πxecos(x)cos(sin(x))dx=Re[2π2+∑k⩾12πik.k!]=2π2Σ1kk!=∫exxdx=∑k⩾0xkkk!⇒∫xecos(x)sin(sin(x))dx=−2πEi(1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com