Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98256 by  M±th+et+s last updated on 12/Jun/20

∫_0 ^∞ ((log(x))/((√x)(x+1)^2 ))dx

0log(x)x(x+1)2dx

Answered by mathmax by abdo last updated on 12/Jun/20

A =∫_0 ^∞  ((ln(x))/((√x)(x+1)^2 ))dx changement (√x)=t give x=t^2  ⇒  A =∫_0 ^∞   ((ln(t^2 ))/(t(t^2  +1)^2 )) (2t)dt =4 ∫_0 ^∞   ((ln(t))/((1+t^2 )^2 ))dt    A =4{ ∫_0 ^1  ((ln(t))/((1+t^2 )^2 ))dt +∫_1 ^(+∞)  ((lnt)/((1+t^2 )^2 ))dt(→t=(1/u))}  =4{ ∫_0 ^1  ((ln(t))/((1+t^2 )^2 ))dt −∫_0 ^1  ((−lnu)/((1+(1/u^2 ))^2 ))(−(du/u^2 ))}  =4{ ∫_0 ^1  ((ln(t))/((1+t^2 )^2 ))dt−∫_0 ^1  ((ln(u)u^2 )/((1+u^2 )^2 ))} =4 ∫_0 ^1  (((1−t^2 )lnt)/((1+t^2 )^2 )) dt  we have (1/(1+u)) =Σ_(n=0) ^∞  (−1)^n  u^n  ⇒−(1/((1+u)^2 )) =Σ_(n=1) ^∞  n(−1)^n  u^(n−1)  ⇒  (1/((1+u)^2 )) =−Σ_(n=1) ^∞ n(−1)^n  u^(n−1)  ⇒(1/((1+t^2 )^2 )) =−Σ_(n=1) ^∞ n(−1)^n t^(2n−2)  ⇒  A =−4 ∫_0 ^1 (1−t^2 )ln(t)(Σ_(n=1) ^∞  n(−1)^n t^(2n−2) )dt  =4 Σ_(n=1) ^∞  n(−1)^n  ∫_0 ^1 (t^2 −1)t^(2n−2)  ln(t)dt =4 Σ_(n=1) ^∞  n(−1)^n w_n   W_n =∫_0 ^1  (t^(2n)  −t^(2n−2) )ln(t)dt  by parts   W_n =[((t^(2n+1) /(2n+1)) −(t^(2n−1) /(2n−1)))ln(t)]_0 ^1  −∫_0 ^1 ((t^(2n+1) /(2n+1))−(t^(2n−1) /(2n−1)))(dt/t)  =−(1/((2n+1)^2 )) +(1/((2n−1)^2 )) ⇒ A =4 Σ_(n=1) ^∞ n(−1)^n ((1/((2n−1)^2 ))−(1/((2n+1)^2 )))  =4 Σ_(n=1) ^∞  (−1)^n  (n/((2n−1)^2 )) −4 Σ_(n=1) ^∞  (−1)^n  (n/((2n+1)^2 ))  Σ_(n=1) ^∞  ((n(−1)^n )/((2n−1)^2 )) =_(n=p+1)     Σ_(p=0) ^∞  (((p+1)(−1)^(p+1) )/((2p+1)^2 )) =−1 −Σ_(n=1) ^∞  (((n+1)(−1)^n )/((2n+1)^2 ))  =−1−Σ_(n=1) ^∞  ((n(−1)^n )/((2n+1)^2 )) −Σ_(n=1) ^∞  (((−1)^n )/((2n+1)^2 )) ⇒  A =−4−4Σ_(n=1) ^∞  ((n(−1)^n )/((2n+1)^2 )) −4 Σ_(n=1) ^∞  (((−1)^n )/((2n+1)^2 ))−4 Σ_(n=1) ^∞  ((n(−1)^n )/((2n+1)^2 ))  =−4 −4 Σ_(n=1) ^∞  (((−1)^n )/((2n+1)^2 )) −8 Σ_(n=1) ^∞  ((n(−1)^n )/((2n+1)^2 ))  Σ_(n=1) ^∞  (((−1)^n )/((2n+1)^2 )) =k−1   (k catalan constsnt)  Σ_(n=1) ^∞  ((n(−1)^n )/((2n+1)^2 )) =(1/2)Σ_(n=1) ^∞  (((2n+1−1)(−1)^n )/((2n+1)^2 )) =(1/2) Σ_(n=1) ^∞ (((−1)^n )/((2n+1)))−(1/2)Σ_(n=1) ^∞  (((−1)^n )/((2n+1)^2 ))  =(1/2)((π/4)−1)−(1/2)(k−1) ⇒  A =−4 −4(k−1)−8{(π/8)−(1/2) −(1/2)(k−1)}  =−4 −4(k−1)−π  +4 +4(k−1) =−π ⇒ A =−π

A=0ln(x)x(x+1)2dxchangementx=tgivex=t2A=0ln(t2)t(t2+1)2(2t)dt=40ln(t)(1+t2)2dtA=4{01ln(t)(1+t2)2dt+1+lnt(1+t2)2dt(t=1u)}=4{01ln(t)(1+t2)2dt01lnu(1+1u2)2(duu2)}=4{01ln(t)(1+t2)2dt01ln(u)u2(1+u2)2}=401(1t2)lnt(1+t2)2dtwehave11+u=n=0(1)nun1(1+u)2=n=1n(1)nun11(1+u)2=n=1n(1)nun11(1+t2)2=n=1n(1)nt2n2A=401(1t2)ln(t)(n=1n(1)nt2n2)dt=4n=1n(1)n01(t21)t2n2ln(t)dt=4n=1n(1)nwnWn=01(t2nt2n2)ln(t)dtbypartsWn=[(t2n+12n+1t2n12n1)ln(t)]0101(t2n+12n+1t2n12n1)dtt=1(2n+1)2+1(2n1)2A=4n=1n(1)n(1(2n1)21(2n+1)2)=4n=1(1)nn(2n1)24n=1(1)nn(2n+1)2n=1n(1)n(2n1)2=n=p+1p=0(p+1)(1)p+1(2p+1)2=1n=1(n+1)(1)n(2n+1)2=1n=1n(1)n(2n+1)2n=1(1)n(2n+1)2A=44n=1n(1)n(2n+1)24n=1(1)n(2n+1)24n=1n(1)n(2n+1)2=44n=1(1)n(2n+1)28n=1n(1)n(2n+1)2n=1(1)n(2n+1)2=k1(kcatalanconstsnt)n=1n(1)n(2n+1)2=12n=1(2n+11)(1)n(2n+1)2=12n=1(1)n(2n+1)12n=1(1)n(2n+1)2=12(π41)12(k1)A=44(k1)8{π81212(k1)}=44(k1)π+4+4(k1)=πA=π

Commented by  M±th+et+s last updated on 12/Jun/20

well done .   correct solution

welldone.correctsolution

Answered by maths mind last updated on 13/Jun/20

=∫_0 ^(+∞) ((2log(t))/(t(t^2 +1)^2 )).2tdt=4∫_0 ((log(t))/((t^2 +1)^2 ))    ⇔4∫_0 ^(π/2) log(tg(z))cos^2 (z)  =4∫_0 ^(π/2) log(sin(z))cos^2 (z)−log(cos(z))cos^2 (z)dz...1  2∫_0 ^(π/2) sin^(2x−1) (t)cos^(2y−1) (t)dt=β(x,y)  1=∂_x β((1/2),(3/2))−∂_y β((1/2),(3/2))=β((1/2),(3/2))(Ψ((1/2))−Ψ((3/2)))  =β((1/2),(3/2))(Ψ((1/2))−Ψ((1/2))−2)  =−2.((Γ((1/2))Γ((3/2)))/(Γ(2)))=−2Γ((1/2)).2^(−1) .(√π).Γ(2)=−π  =

=0+2log(t)t(t2+1)2.2tdt=40log(t)(t2+1)240π2log(tg(z))cos2(z)=40π2log(sin(z))cos2(z)log(cos(z))cos2(z)dz...120π2sin2x1(t)cos2y1(t)dt=β(x,y)1=xβ(12,32)yβ(12,32)=β(12,32)(Ψ(12)Ψ(32))=β(12,32)(Ψ(12)Ψ(12)2)=2.Γ(12)Γ(32)Γ(2)=2Γ(12).21.π.Γ(2)=π=

Commented by maths mind last updated on 13/Jun/20

i used Γ(z)Γ(z+(1/2))=2^(1−2z) (√π).Γ(z)  for Γ((3/2)),z=(1/2),Γ((1/2))=(√π)

iusedΓ(z)Γ(z+12)=212zπ.Γ(z)forΓ(32),z=12,Γ(12)=π

Commented by  M±th+et+s last updated on 13/Jun/20

very nice sir thanx

verynicesirthanx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com