Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 98267 by  M±th+et+s last updated on 12/Jun/20

∀ a,b>0 , a^2 +b^2 =1  prove that  ((1/a)+(1/b))((b/(a^2 +1))+(a/(b^2 +1)))≥(8/3)

a,b>0,a2+b2=1 provethat (1a+1b)(ba2+1+ab2+1)83

Answered by maths mind last updated on 13/Jun/20

(((a+b)/(ab)))(((b^3 +b+a^3 +a)/(2+a^2 b^2 )))  (b^3 +a^3 +a+b)=(a+b)(b^2 +a^2 −ab+1)  =(a+b)(2−ab)  ⇔(((a+b)^2 (2−ab))/(ab(2+a^2 b^2 )))  (a+b)^2 =1+2ab  ⇔(((1+2ab)(2−ab))/(ab(2+a^2 b^2 )))≥(8/3)  let ab=x⇔(((1+2x)(2−x))/(x(2+x^2 )))≥(8/3)  ⇔8x^3 +6x^2 +7x−6≤0  ab≤(1/2)(a^2 +b^2 )=(1/2)⇒  8x^3 ≤1,7x≤(7/2),6x^2 ≤(3/2)  ⇒8x^3 +6x^2 +7x−6≤1+(7/2)+(3/2)−6=0  ⇔((1/a)+(1/b))((a/(b^2 +1))+(b/(a^2 +1)))≥(8/3)

(a+bab)(b3+b+a3+a2+a2b2) (b3+a3+a+b)=(a+b)(b2+a2ab+1) =(a+b)(2ab) (a+b)2(2ab)ab(2+a2b2) (a+b)2=1+2ab (1+2ab)(2ab)ab(2+a2b2)83 letab=x(1+2x)(2x)x(2+x2)83 8x3+6x2+7x60 ab12(a2+b2)=12 8x31,7x72,6x232 8x3+6x2+7x61+72+326=0 (1a+1b)(ab2+1+ba2+1)83

Commented by M±th+et+s last updated on 13/Jun/20

������ great work

Commented bymaths mind last updated on 13/Jun/20

thanx  , i got answer for your post  i will post it latter

thanx,igotanswerforyourpost iwillpostitlatter

Commented by M±th+et+s last updated on 13/Jun/20

thank you so much .  god bless you sir

thankyousomuch. godblessyousir

Answered by 1549442205 last updated on 13/Jun/20

Putting a=cosϕ,b=sinϕ,ϕ∈[0;(π/2)].Then  the given inequality becomes   ((1/(cosϕ))+(1/(sinϕ)))(((sinϕ)/(cos^2 ϕ+1))+((cosϕ)/(sin^2 ϕ+1)))≥(8/3)  ⇔(((cosϕ+sinϕ)(cos^3 ϕ+sin^3 ϕ+cosϕ+sinϕ))/(cosϕ.sinϕ(2+cos^2 ϕsin^2 ϕ)))≥(8/3)  ⇔(((cosϕ+sinϕ)^2 (2−sinϕcosϕ))/(((sin2ϕ)/2).(2+((sin^2 ϕ)/4))))≥(8/3)  ⇔(((1+sin2ϕ)(2−((sin2ϕ)/2)))/(sin2ϕ+((sin^3 ϕ)/8)))≥(8/3)  ⇔3{2+(3/2)sin2ϕ−((sin^2 2ϕ)/2)}≥8sin2ϕ+sin^3 2ϕ  ⇔sin^3 2ϕ+(3/2)sin^2 2ϕ+(7/2)sin2ϕ−6≤0  ⇔2sin^3 2ϕ+3sin^2 2ϕ+7sin2ϕ−12≤0  ⇔(sin2ϕ−1)(2sin^2 2ϕ+5sin2ϕ+12)≤0  The final inequality is always true because  (2sin^2 2ϕ+5sin2ϕ+12)=2(sin2ϕ+(5/4))^2 +((71)/8)>0  and sin2ϕ≤1.Therefore the given   inequality proved.The equality occurs  if and only if sin2ϕ=1⇔a=b=((√2)/2)

Puttinga=cosφ,b=sinφ,φ[0;π2].Then thegiveninequalitybecomes (1cosφ+1sinφ)(sinφcos2φ+1+cosφsin2φ+1)83 (cosφ+sinφ)(cos3φ+sin3φ+cosφ+sinφ)cosφ.sinφ(2+cos2φsin2φ)83 (cosφ+sinφ)2(2sinφcosφ)sin2φ2.(2+sin2φ4)83 (1+sin2φ)(2sin2φ2)sin2φ+sin3φ883 3{2+32sin2φsin22φ2}8sin2φ+sin32φ sin32φ+32sin22φ+72sin2φ60 2sin32φ+3sin22φ+7sin2φ120 (sin2φ1)(2sin22φ+5sin2φ+12)0 Thefinalinequalityisalwaystruebecause (2sin22φ+5sin2φ+12)=2(sin2φ+54)2+718>0 andsin2φ1.Thereforethegiven inequalityproved.Theequalityoccurs ifandonlyifsin2φ=1a=b=22

Commented by M±th+et+s last updated on 13/Jun/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com